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Abstract: A fully quantized analysis is presented of induced magneto-electric rectification in 

individual diatomic molecules in the steady-state regime. Good agreement is obtained 

between this quantum theory and a classical model that includes the same key kinematic 

elements but predicts temporal dynamics as well. At the molecular level, an enhanced 

magneto-electric  optical interaction driven by dual optical fields E  and 
*

H is shown to give 

rise to a static electric dipole (ED) moment oriented along the propagation direction of 

linearly-polarized light in dielectric materials. This longitudinal Hall effect or “charge 

separation” interaction is quadratic with respect to the incident field strength and exhibits an 

induced moment that is limited by the ED transition moment of the molecular resonance. 

Overall, the two-photon dynamics can be described as first establishing an electric 

polarization and imparting orbital angular momentum on which the magnetic field exerts 

torque in the excited state of the molecule. Magnetic torque mediates an exchange of orbital 

and rotational angular momenta that de-excites the molecule and simultaneously enhances 

magneto-electric rectification. Material properties that affect magneto-electric response at the 

molecular level are identified. 
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1. Introduction  

Optical interactions mediated by the magnetic field of light are potentially relevant to many 

fields including metamaterials, spintronics, quantum information, and data storage. In recent 

years novel applications of electromagnetism have emerged from the search for negative 

permeability in structured materials [1], coherent optical spin control of semiconductor charge 

carriers [2] or luminescent centers [3], and ultrafast switching of magnetic domains [4]. As a 

consequence, any prospect of eliciting response from homogeneous materials using novel 

nonlinear processes reliant on the optical magnetic field could accelerate the development of 

unforeseen magneto-photonic technologies. The realization of strong optical magnetism in 

nominally “non-magnetic” media for example could lead to novel forms of light-by-light 

switching, energy conversion, negative permeability in natural materials or the generation of 

large (oscillatory) magnetic fields without current-carrying coils [5-8]. In this paper, a dual 

field magneto-electric (M-E) optical process is shown to induce a strong rectification field at 

the molecular level [9] through a mechanism that is somewhat reminiscent of the Einstein-de 

Haas effect [10]. Optical excitation deposits orbital angular momentum in the molecules and 

magnetic torque converts it to molecular rotation. During this process a static longitudinal 

electric dipole (ED) moment is induced that can be as large as the electric dipole transition 

moment. A detailed quantum model is formulated, as well as a corresponding classical model 

that has the advantage of permitting predictions of system dynamics that are not possible with 

the steady-state quantum analysis. The magneto-electric process is shown to be universally 

allowed at the molecular level, despite the fact it is second-order with respect to the incident 

field. This is a result of PT-symmetry that governs the interaction [see [11] and Appendix A]. 

Predictions of transient response are made and related to the experimental and theoretical 

results for magneto-electric optical magnetization presented in earlier papers [12, 13]. 

Magneto-electric phenomena have been investigated at the macroscopic level in solids for 

some time [14] but at the microscopic level have only been reported in light scattering 

experiments [12] and analyzed [13,15] comparatively recently. Bulk M-E materials typically 

include magnetic constituents that enable the generation of electric voltages via 



magnetostriction or they make use of electric fields to control magnetic domains. In contrast 

to this, here we analyze the dynamics of a non-magnetic, 2-level model that produces a 

rectification polarization )0(
)2(

P  via a second-order nonlinearity driven jointly by the electric 

and magnetic field components of light in individual molecules. Surprisingly, no special 

crystal symmetry is necessary to support this magneto-electric interaction, although M-E 

charge separation can be enhanced following guidelines for molecular design developed in 

this paper. In atoms magnetic transitions at optical frequencies typically require a circularly-

polarized electric field [16], though oriented optical magnetic fields can be used to drive 

magnetic dipole transitions in rare earth ions [17, 18]. Generally, in spinless, low-Z atoms 

irradiated with linearly-polarized light, the high frequency of the optical magnetic field does 

not match the low frequency range of transitions between (degenerate or nearly-degenerate) 

excited state sublevels. However, in molecular media very strong magnetic effects can take 

place as the result of magnetic torque dynamics [13] that unexpectedly make optical magnetic 

resonance possible at elevated field strengths.   

In this paper a quantum treatment of M-E rectification is developed to furnish a closed 

form, steady-state solution for )0(
)2(

P . A simple classical model based on the same dynamic 

elements is also formulated to enable predictions of temporal dynamics. Because the 

rectification nonlinearity is strongly coupled with optical magnetization, some results are 

shown for the induced magnetic moment, although similar results have been described 

previously [13]. Magneto-electric rectification is shown to induce a static longitudinal electric 

dipole in the medium whose magnitude at high intensities exceeds that of the first-order 

electric polarization giving rise to Rayleigh scattering. Large transition moments and low 

rotation frequencies are found to strengthen magneto-electric response. Calculations of 

transient behavior reveal that the response evolves from under- to over-damped as the 

librational relaxation rate is increased, and instabilities appear under conditions of low 

damping or very high field strengths. Finally, the intensity required to reach maximum 

rectification field strength is found to scale inversely with the rotation/libration frequency of 

the molecule. 

2. A classical model for magneto-electric response 

Quantum mechanical dynamics can sometimes be visualized with classical analysis when 

excited states play a minor role in determining the optical response of a system. Here we 

adopt this perspective to anticipate the role of torque exerted by the optical magnetic field in 

magneto-electric interactions at the molecular level, the quantum version of which is covered 

in Section 3. An intuitive picture of the key dynamics of such interactions is thereby provided 

before the formal quantum theory is introduced, and a computational approach is outlined 

whereby temporal dynamics of M-E interactions can be simulated. 

The conventional classical model that relates the optical properties of a medium to charge 

dynamics on the atomic scale depicts an electron as a small mass attached to a nucleus by a 

mechanical spring. Motion of the electron subject to an electric field is determined by 

classical equations of motion referenced to a stationary equilibrium point chosen to be the 

origin [19]. Here we extend the customary model to include the Lorentz force on molecules 

which are allowed to rotate. In this case, the equilibrium point of the electron undergoes 

rotational motion and cannot be used as a fixed point of reference. Instead the origin of the 

coordinate system in the present analysis is chosen to coincide with the center-of-mass of the 

molecule. This introduces a new degree of freedom, namely rotation about the center-of mass, 

which permits the optical magnetic field to exert torque on the molecular charge system to 

alter the axis along which angular momentum is aligned. 

The displacement of the electron from equilibrium is taken to be Arr   , where Ar  

specifies the point of equilibrium. This designates the point of attachment of the electron on 



its spring in the classical picture shown in Fig. 1, whereas   specifies electron position with 

respect to the center-of-mass. The applied fields cause displacements and librations of the 

electron about the point of equilibrium. Hence the equation of motion with respect to the 

center-of-mass in a fixed molecular frame of reference is  
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Here 0  and   are the resonant frequency and damping constants of the Hooke’s Law 

oscillator, and m is the electron effective mass. )(tF  is the external force acting on the 

oscillator. It has the form 

 )v()( BEqtF  , (2.2) 

where q is the charge, E and B are the applied fields oriented along x and y respectively, and 

v  is velocity. 

In Eq. (2.1), the internal restoring force experienced by the electron has been written as 

)()(
2

0 trmtFi  . Whenever the electron is out of equilibrium, the molecule experiences an 

equal but opposite reaction force ir FF  , applied to the point of equilibrium. That is, the 

electron exerts a torque on the molecule given by 

   AA rmrmrT
2

0

2

0 )( . (2.3) 

This torque modifies the components of angular velocity in a fashion that depends on the 

moment of inertia about each Cartesian axis. For a homonuclear diatomic molecule there are 

two distinct moments of inertia denoted by  

 zy III  , (2.4) 

 xII // . (2.5) 

The torque due to the reaction force is therefore capable of creating components of angular 

velocity in all three directions [20] according to 
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Note that for the specific initial condition yrr AA
ˆ)0(  , the torque in Eq. (2.3) develops 

components only along x̂  and ẑ , since Ar  in Eq. (2.3) has no components along ŷ . That 

is, 0)0( yT . According to Eqs. (2.6) and (2.8), the non-vanishing torque components in this 

case alter linear velocities in the y-z and x-y planes as time progresses. Motion is therefore 

inherently three-dimensional in the model. The same conclusion is reached for an initial 



condition of zrr AA
ˆ)0(  . However, for an initial condition xrr AA

ˆ)0(  , corresponding to a 

point of equilibrium located on the axis of the molecule, torque has no effect on the dynamics 

since 0)0()0( Ar . Consequently, to investigate the role of torque in this model, all 

calculations were performed using the initial condition yrr AA
ˆ)0(  .  

 

 
Fig. 1. Model of a homonuclear diatomic molecule, together with the coordinate system and 

position vectors   and Ar  specifying electron position and point of equilibrium respectively. 

 

In general, the exertion of torque by the displaced electron causes the molecule to rotate. 

In the reference frame of the molecule, this changes the position of the equilibrium or 

attachment point, as described by the equation 

 )()(
)(

trt
dt

trd
A

A  , (2.9) 

where )(t is the angular velocity of the molecule.  

The quantities of main interest here are the instantaneous values of the induced electric 

polarization )(tP  at zero frequency and the optical magnetization )(tM . Their definitions in 

terms of the given coordinate system are 

 )()( tetP  , (2.10) 

and 
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These quantities were simulated by applying finite time steps in a Matlab code that integrated 

Eq. (2.1). For the nth iteration, electron position )( 1nt was calculated from )( nt  and 

inserted into Eq. (2.3) to update torque components. Angular velocities from Eqs. (2.6-2.8) 

were then similarly used to obtain the change in the “tether” position, )( nA tr , from Eq. 

(2.9). This yielded a new value of Ar , given by )()()( 1 nAnAnA trtrtr  , to be inserted 

into Eq. (2.1) and the procedure was iterated. 



The results are plotted in Figs. 2 and 3 to illustrate several features of a molecular, as 

opposed to an atomic, model of magneto-electric dynamics. The magnitudes and temporal 

dynamics of P(t) and M(t) are seen to depend on moments of inertia, applied torque, and 

internal damping. For example, in these two figures, the moments of inertia //I  and I have 

been assigned arbitrary but representative values that are inversely proportional to optical and 

rotation frequencies of the molecule respectively. By comparing left and right plots in Fig. 2 

the average displacement of the electron away from its initial equilibrium point is seen to 

increase roughly a thousand-fold when /// II  is increased from a value of 1 to 1000. In Fig. 

3, magnetization is enhanced by a similar factor as the result of varying this structural ratio. 

The enhancement results from a large increase in the effective area enclosed by librational 

motion of the electron when the rotation axis is altered by the action of magnetic torque.  

In Fig. 2 (and Fig. 4) fast oscillations at the second harmonic of the optical frequency 

accompany the formation of the static electric dipole moment along the propagation axis. 

However the harmonic motion does not experience dynamic enhancement, does not radiate, 

and does not contribute to the average offset polarization which is the rectification or “charge 

separation” signal. Hence it will be ignored here. The magnetization on the other hand is 

radiant. This is because it is driven by the optical magnetic field which breaks any 

centrosymmetry which may be present, it is transverse to the propagation axis, and it 

oscillates at the fundamental frequency (Fig. 3). Figure 4 shows that an increase of librational 

damping removes the long-period nutation transients (Rabi oscillations) while not affecting 

the asymptotic values of rectification or magnetization. This is the same behavior expected of 

nutation in all-electric interactions.  

Figure 5 shows that the charge separation and magnetization both reach peak values at 

shorter times for elevated field strengths in under-damped conditions. Stronger driving fields 

force faster response. In this figure the rectification and magnetization responses show signs 

of the onset of saturation however, since the rectification increases less than the magnetization 

between low and high fields. This is because the former is a second-order process while the 

latter is third-order in a classical treatment. For the simulations of Figs. 2-6, magnetization 

and polarization are plotted in the same units for direct comparison, as P and M/c. Some 

parameters were assigned fixed values such as ω0 = 1.63×1016 rad/s, 
0// /I , and 

09.0   . Values for other quantities are provided in the figure captions. The product of 

electron charge with the steady-state limit of the tether position rA had a value of 2.4×10-30 

C.m. This is equivalent to a quantum mechanical ED transition moment in a hydrogenic 

model [21] of mCe 
30

1026.1 . It may then be noted that, as expected, the oscillations 

in Figs. 4(a) and 5(b) which have periods of 0.32 and 0.21 ps are in quite good agreement 

with inverse Rabi frequencies of 0.26 and 0.18 ps defined by 
11

)/(


 hEeR  . 

 

 

 



Fig. 2. Evolution of charge separation, Pz(0), of the test charge versus time for 

1///  II (left) and 1000///  II (right). Other fixed parameters were 

mVE /101
9

  and 01.0   . 

 

 

Fig. 3. Evolution of the magnetic moment (divided by c) versus time for 1///  II (left) 

and 1000///  II (right). Other fixed parameters were mVE /101
9

  and 01.0   . 

 

 
 

Fig. 4. Evolution of charge separation (top) and magnetization/c (bottom) versus time for 

different values of the magnetic (librational) damping coefficients: 
003.0   (left) and 

03.0    (right). Other fixed parameters were mVE /102
9

  and 1000///  II . 

 

 



 
 

Fig. 5. Evolution of charge separation (top) and magnetization/c (bottom) versus time for 

different values of the applied electric field. The electric field strength is mVE /10
9

  (left) 

and mVE /103
9

  (right). Other fixed parameters were 1000///  II  and 

003.0   . 

 

At elevated field strengths, instabilities appeared in the temporal evolution of the system. This 

emphasized the sensitivity of the extended Drude-Lorentz model to parametric instabilities, 

arising from inclusion of the magnetic Lorentz force [22]. Figure 6 shows traces of the 

electric and magnetic moments versus time at high optical field strength, with and without 

strong librational damping. Self-pulsing and frequency-chirped oscillations which are not at 

the Rabi frequency are evident in the traces. 

 

 



 
Fig. 6. High-field charge separation (top) and high-field magnetization/c (bottom) computed 

for low damping, 05.0 (left) and high damping, 2.0 (right). Other fixed parameters 

were mVE /101
10

  and 1000///  II . 

 

Finally, the dependences of magneto-electric rectification and magnetization on intensity were 

calculated for representative values of the librational frequency   of the electron in the 

reference frame of the molecule, using the classical model. The results are summarized in Fig. 

7. Three different values of 0/  were considered to illustrate the effect of magnetic torque 

on the enhancement of M-E effects. A complication of these simulations was that the model 

destabilized when   was varied widely for a fixed value of )0(Ar . This problem was 

addressed by running stable computations with initial tether positions that were scaled 

according to /1)0( Ar  and then correcting the results with the inverse factor (to which 

the steady-state moment is proportional). Because our simulations assume step-function 

excitation, steady-state response (at long times) also reflects a saturation limit that must be 

avoided to discern the proportionality of response with intensity. Below saturation, the values 

of all the moments were therefore determined at elapsed times of  0/1  to cancel the 

effect of libration frequency on the theoretical torque completion time, which is 

0/4   ctheor   (see [13]). This provided appropriate scaling in time for different libration 

frequencies. 

    From the plots in Fig. 7, it is readily seen that the square of the rectification moment is 

quadratic with respect to photon number (or intensity) until it reaches a plateau (saturation 

level). There its value is constant and equals the dipole moment calculated from the steady-

state tether position. The squared magnetization has a cubic dependence on input intensity in 

the classical picture and displays a strong dependence on the rotation frequency similar to that 

in the rectification curves. In the next section it is shown that a quantum mechanical 

formulation of these dynamics predicts the same behavior, with the exception that 

magnetization undergoes quadratic growth at low intensities before reaching the cubic regime 

and saturation of the rectification moment is determined by the transition dipole moment 

rather than a mechanical tether position.  

 



 
   (a)     (b) 

Fig. 7. (a) Squared magnitudes of the magneto-electric rectification dipole moment (filled 

circles) compared to the linear ED moment (open circles) as a function of photon number. The 
ED moment is proportional to input photon number (or intensity) and determines Rayleigh 

scattering intensity. The nonlinear rectification moment is plotted as three curves with filled 

circles corresponding to different ratios of 
357

10,10,100/


  (left to right).  (b) 

Squared magnitudes of the induced magnetic moment (proportional to the magnetic scattering 

intensity) versus number of incident photons for ratios of 
357

10,10,100/


  

(left to right). In both (a) and (b) filled circles are nonlinear moments whereas open circles are 

linear ED moments shown for the purpose of direct comparison. 

 

3. Quantum model 

A quantum theory equivalent to the model of Section 2 may be formulated for a homonuclear 

diatomic molecule (symmetric top) with a 1-photon electric dipole (ED) resonance at 

frequency 0 . The quantization axis lies along the axis of the molecule [23]. Without loss of 

generality the electric field at frequency   may also be assumed to point in this direction (i.e. 

along x̂ ) and to propagate along ẑ . The ground electronic state is taken to be
1Sg

+
, the 

excited state 
1Pu

, and orbital angular momentum is specified by the eigenvalue of L  and its 

projection lm  (or ) on the axis (see [23]). Following an earlier analysis [13], uncoupled 

electronic states are denoted by aLml  with a =1,2  specifying the principal quantum 

number.  The basis states support an ED transition from L = 0  to L =1 followed by a 

magnetic dipole (MD) transition from ml = 0  to ml = ±1 . The four states 100 , 210 , 21-1  

and 211  comprise the electronic basis. For pedagogical purposes, the basis state 211  is at 

first omitted from the analysis. This has the benefit of reducing the dimensionality of the 

eigenvalue problem from 4´4 to 3´3 . This allows an analytic method of solution to be 

illustrated while introducing only a small error in the calculated rectification polarization. 

Numerically exact results are provided at the end of the paper by reinserting state 211  into 

the basis set and re-calculating the dipole moments. 

In the pedagogical 3-state model, molecular rotational states are written Omo and 

comprise only 00 , 10  and 11  (see Appendix A of [13]). The optical field is assumed to 



be a single-mode Fock state n . The molecule-field states therefore form the uncoupled 

product states 1 º 100 00 n , 2 º 210 10 n-1 , and 3 º 21-1 11 n . These are 

eigenstates of the molecule-field Hamiltonian
 

 , (3.1) 

with eigenenergies Ei(i =1,2,3)  defined by Ĥmf i = Ei i .  Ô
2 / 2I  designates kinetic energy 

of molecular rotation perpendicular to the internuclear axis with moment of inertia I.  Basis 

state energies are: 

 ,  (3.2) 

 , (3.3) 

 . (3.4) 

In Eq. (3.1) above, z̂  is a Pauli spin operator. â+  and â-  are raising and lowering operators 

of the single mode field respectively. The sign of the first term on the right of Eq. (3.4) 

reflects the fact that state 3 has rotational energy  but no internal electronic 

kinetic energy (i.e. no electronic excitation). As depicted in Fig. 8, and discussed further 

below, this is the terminal state of an allowed 2-photon interaction that terminates in a 

rotationally-excited ground state sublevel as the result of magnetic torque. 

 

 
Fig. 8.  Energy levels of the molecular model showing the 2-photon transition (solid arrows) 

driven by the optical E and 
*

H fields The dashed downward arrow depicts a magnetic de-

excitation channel that becomes an option if the excitation bandwidth exceeds  .  

 

Next, the rotating-wave approximation (RWA) is made for both the electric and magnetic 

field interactions. This is consistent with a small 1-photon detuning   0 , and also 

with a small 2-photon detuning (  ) of the EH *
 process (   ). Next, the magnetic 

interaction , which includes torque by the optical magnetic field on 

the orbital angular momentum, is introduced [13]. The quantized form of this interaction 

Hamiltonian is:  

 , (3.5) 



Primes on the orbital ( ) and rotational angular momentum operators ( ) 

indicate division by . The prefactors are  and , where 

  )(

0/02
m

ceff i    is the effective magnetic moment;  is the electric field 

per photon. 
)(

int
ˆ mH  is shown in the appendix to be PT-symmetric although it is Hermitian. The 

full Hamiltonian is int
ˆˆˆˆ HHHH fieldmol  , and the corresponding eigenvalue equation is 

DEDH Dˆ  in the uncoupled basis, with 
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The secular equation 

 H -EDiI( ) Di(n) = 0 , (3.7) 

may be solved by a “dressed” state approach [24], which in this case will determine “doubly-

dressed" eigenstates of the form 

 ncnbnanD iiii 1112111021000100)(  , (3.8) 

together with their eigenenergies EDi . These energy levels are illustrated in Fig. 9, together 

with dipole moments between their components that are allowed in the dressed state picture 

by the usual selection rules for ED and MD transitions.  

 

 
Fig. 9. Diagram of three dipole moments formed by strong excitation of a nominally 2-level 

molecule during a 2-photon EB*
process. p(1)(w)x̂  is the linear ED polarization along the 

quantization axis. p(2)(0)ẑ  and m(2)(w)ŷ
 

are nonlinear rectification and magnetization 

moments oriented along ẑ  and ŷ  respectively. 

 

The eigenvalue problem of the 3-state model can be solved by diagonalization. The results 

can be found in [13], illustrating an analytic approach (that is approximate) to this problem. 

The admixed components of the dressed states mediating the electric dipole transition 

moment, the rectification moment, and the magnetic moment are all shown in Fig. 9. 

Numerical plots of )(ˆ
)1(
p and )0(ˆ

)2(

zp  are presented next in Fig. 10 as a function of 



pump photon number, or intensity, for several values of the rotation frequency of the 

molecule. The results shown were obtained by including the fourth state of the full basis in 

which the dressed states become 

ndncnbnanD iiiii 112111112111021000100)(  , (3.9) 

and the index j runs from 1 to 4. The rectification moment may be written as 
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The upper limit of  )0(ˆ
)2(

zp in Fig. 10 is determined by the Bohr radius in this hydrogenic 

model to be 02ea  [21]. The induced magnetic moment )(ˆ m  on the transition between 

states 2 and 3 (and between states 2 and 4) was calculated from the expression 
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Results for  2/)(ˆ cm  are plotted in Fig. 10 in the same 4-state basis. 

 

 
   (a)     (b) 

Fig. 10. (a) Squared quantum ED moment )(
)1(
p  (open circles) and the nonlinear 

rectification moment )0(
)2(

p  (filled circles) versus incident photon number in three curves 

reflecting different ratios of the rotational and resonance frequencies given by 

357

0 10,10,10/


 (left to right). (b) Squared quantum ED moment )(
)1(
p  

(open circles) and the MD moment plotted as cm /)(  versus photon number for the same 

three values of the rotation frequency  .  In both (a) and (b) filled circles are nonlinear 

moments whereas open circles are linear ED moments shown for direct comparison. 

 

4. Results and conclusions 

The classical molecular model developed in Section 2 exhibited nonlinear behavior quite 

distinct from the elementary Drude-Lorentz model [19] as the direct result of including the 



Lorentz force and magnetic torque. The appearance of two enhanced magneto-electric effects 

driven by the optical fields was in excellent agreement with the more detailed results of 

quantum theory in Section 3. In particular both analyses predicted magneto-electric 

rectification, which is of primary interest in this paper, and its enhancement by magnetic 

torque when the ratio of transverse to parallel moments of inertia, namely /// II , is large. In 

fact the longitudinal ED moment in M-E rectification can be enhanced to the degree that it 

exceeds the linear ED moment driven by the incident electric field (over a limited intensity 

range). For values of the inertial ratio exceeding the inverse fine structure constant 

( )/1(/ //  II ) the calculations also revealed that optical magnetization can be as large as 

the linear electric polarization under non-relativistic conditions. The physical mechanism for 

enhancement of M-E effects is illustrated in Fig. 12, where the initial area enclosed by charge 

libration in a molecule is seen to grow as the result of torque dynamics which convert orbital 

angular momentum to rotational angular momentum (see also [13]). For both rectification and 

magnetization the requirement for full enhancement of either the rectification or the 

magnetization is that )/1(/ //  II .  

Regarding temporal behavior, simulations showed that the time required to reach steady-

state behavior  is strongly affected by optical field strength, librational damping rate and the 

/// II  ratio of the molecular model. High field strengths speeded up torque dynamics and the 

appearance of M-E rectification. A small damping rate resulted in under-damped Rabi 

oscillations that persisted in time without much effect on the amplitude of response. High 

/// II  ratios shortened the time required to reach maximum charge separation or maximum 

magnetization by making magnetic torque more effective. In high fields, instabilities that 

were affected by changes in the librational damping parameter appeared. 

 

 
Fig. 12. Magnetic torque mediates a rotation of the axis about which there is electron angular 

momentum in a molecule. The axis rotation causes a transfer of orbital angular momentum to 
rotational (librational) angular momentum, thereby enlarging the area enclosed by circular 

electron motion. 

 

Quantum theory presented in Section 3 closely paralleled the classical model, predicting  

the nonlinear electric polarization )0(
)2(

p  to be quadratic with respect to the input field 

amplitude (linear with respect to the number of photons) at all intensities below a well-

defined saturation point where it reaches a constant value given by the ED transition moment 

in the hydrogenic model. The nonlinear magnetic moment )(m  was similarly quadratic with 

respect to the input fields (linear with respect to the number of photons) at low intensities, but 

underwent an interval of cubic growth before saturating at a value equal to the induced ED 



moment )(
)1(
p at high intensities. Importantly, the downward magnetic transition in Fig. 8 

which changes the principal quantum number and produces enhanced magnetic response was 

found to be an allowed process when torque is considered. The quadratic portion of the 

magnetization response is a purely quantum mechanical feature of the predictions that relies 

on the formation of a non-radiative, 2-photon coherent state [13]. Cubic response of the 

magnetic moment on the other hand is driven by the field combination EEHM
*

 . The 

potentially competitive process EHHM
*

 is forbidden under inversion symmetry [25]. In 

the saturation regime, the magnetization maintained a linear dependence on the input 

intensity, equalling the (linear) electric polarization responsible for Rayleigh scattering. 

Physically, induced magnetization cannot exceed the electric polarization since the optical 

magnetic field can only deflect motion initiated by the electric field. Ultimately both the ED 

and MD moments cease to grow when the ionization threshold is reached (on the far right of 

Figs. 10 and 11).  

The substantial agreement obtained between the classical and quantum approaches of this 

paper is evident from a comparison of Figs. 7 and 10. This confirms that strong magneto-

electric rectification (and magnetization) at the molecular level may thus be accounted for by 

the torque-mediated transfer of orbital to rotational angular momentum. The enhancement 

mechanism is due to an exchange of angular momentum in a fashion reminiscent of the 

Einstein-deHaas effect in which spin angular momentum is converted to macroscopic rotation 

of an unmagnetized body [10]. Yet spin plays no role in the theory presented here. Due to P-T 

symmetry of the magnetic torque Hamiltonian, M-E rectification is also predicted to be 

universally allowed in spinless dielectric systems at the molecular level.  

The intensity Isat at which the static M-E polarization saturates depends on structural 

aspects of the individual molecules, especially the ratio of moments of inertia determining the 

excited state and rotational (librational) frequencies. The rotational frequency governs the 2-

photon detuning of the process, so it is not surprising that the intensity Isat at which maximum 

response is attained varies in proportion to the rotation/libration frequency wj . In molecular 

liquids the rotation frequency is given by , so an inverse dependence on  moment of 

inertia is expected. In solids there is no well-defined moment of inertia at the molecular level. 

Nevertheless, librational frequencies associated with localized optical centers are well-defined 

excitations that may be represented by a dominant frequency wj  or a distribution of 

librational frequencies. Hence the intensity requirement for saturated M-E rectification (and 

magnetization) can be expected to drop as such characteristic frequencies are reduced in 

liquids and solids alike. Other structural and chemical aspects of the medium, such as the 

strength of the transition dipole and the orientational damping constant affect the separation of 

charge as well (as indicated by Figs. 2-4). The present work therefore offers concrete 

guidelines with which to optimize materials for magneto-electric rectification. These results 

augment a complementary analysis of off-diagonal elements of the third order electric 

susceptibility tensor which provides design rules to optimize M-E materials [25] but in 

addition the results presented here permit the prediction of temporal dynamics. 

Appendix A. Parity-time symmetry of the magnetic interaction Hamiltonian 

In this section the symmetry properties of the quantized magneto-electric Hamiltonian are 

examined under reversal of time and space coordinates. It is shown that although neither 

parity nor time-reversal symmetry is obeyed on an individual basis, the combination of time- 

and space inversion is a valid dynamic symmetry for M-E interactions. Thus systems that 

evolve according to this Hamiltonian are parity-time (P-T) symmetric. 

The magnetic portion of the interaction Hamiltonian in Eq. (3.5) that governs the second 

step of magneto-electric interactions at the molecular level is 



 .).ˆ'ˆ'ˆ(ˆ )(

int chaOLfH
m




 . (A.1) 

As shown below, the magnetic dynamics described this Hamiltonian obey parity (P) and time 

(T) reversal symmetry only in combination. To establish this result, the effects of applying P 

and T symmetries to the individual operators in 
)(

int
ˆ m

H  are analyzed and then their combined 

effects are determined. 

The operators L̂  and Ô , governing orbital and rotational angular momentum 

respectively, transform identically under time reversal and spatial inversion. Hence it is 

sufficient to analyze  the transformation properties of only one of them, say prL ˆˆˆ  , using 

its representation in terms of the real space coordinate r  and the linear momentum 

dtdrp /  of a charge in motion. Now the motion variables themselves obey the 

transformations rrP ˆ)ˆ(ˆ  ; rrT ˆ)ˆ(ˆ   and ppP ˆ)ˆ(ˆ  ; ppT ˆ)ˆ(ˆ  . Consequently it is 

straightforward to determine the effects of applying parity and time-reversal operators to an 

angular momentum operator. 
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Similarly, the optical field raising and lowering operators may be represented by the canonical 

variables q and p according to 




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
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 p
iqa
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2
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
. Hence the field transformations are 

similarly determined by space and momentum properties. 
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Combining the results of Eqs. (A.2-A.5), the magnetic part of the Hamiltonian is found to 

transform as follows: 
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According to (A.6) and (A.7), the magnetic interaction Hamiltonian does not obey either 

spatial inversion or time reversal symmetry separately. However in Eq. (A.8) it is invariant 

under the combined symmetry operations of parity and time reversal. 
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