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Nonlinear magnetoelectric metamaterials:
Analysis and homogenization via a microscopic coupled-mode theory
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Artificially structured metamaterials hybridized with elements that respond nonlinearly to incident electromag-
netic fields can, from a macroscopic perspective, support nonlinear responses that cannot be described by purely
electric or magnetic interactions. To investigate the mechanisms and behaviors of such interactions, termed
nonlinear magnetoelectric coupling, we develop a set of coupled-mode equations for describing three-wave
mixing in a metamaterial, using Bloch modes as the basis. By equating these coupled-mode equations to those of
a homogenized system, we derive closed-form expressions for the macroscopic nonlinear susceptibilities. From
these expressions, a great deal can be inferred about the nature and construction of magnetoelectric nonlinearities
in metamaterials. As an example, we apply this method in the analysis of a prototypical nonlinear magnetoelectric
metamaterial. In particular, we show that independent control of the eight second-order susceptibility tensors
encompasses a massive parameter space from which new realms of nonlinear interference and wave manipulation
can be accessed.
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I. INTRODUCTION

The manipulation of electromagnetic radiation is an im-
mense field at the heart of much of modern technology, relying
on a wide array of light-matter interactions. In particular,
certain materials respond to electromagnetic waves in such a
way that the incident electric and magnetic fields are coupled
through the medium itself. In other words, the medium is
electrically polarized by both incident electric and magnetic
fields, and likewise can be magnetically polarized by both
electric and magnetic fields. These materials are variously
known as bianisotropic, chiral, magnetoelectric, and optically
active, depending on the context and classification, but they
all involve some interdependence of the electric and magnetic
responses and fields. The recent surge of research into artificial
mediums composed of periodic, subwavelength, polarizable
elements has in turn sparked interest in these magnetoelectric
interactions (for a review of the subject, see Refs. [1–3]
and references within). Even though these artificial media,
known collectively as metamaterials (MMs), are typically
composed of dielectric and metal components, their geometry
can be tailored to support circulating currents—the essence
of magnetic response [4]. Through careful design of the
metamaterial elements, the incident electric and magnetic
fields can be coupled to the medium and each other through
supported intraelement modes, as in dipolar resonances,
and interelement modes, as in magnetoinductive coupling
[5,6]. MMs can thus access strong and tailorable electric,
magnetic, and magnetoelectric responses [7,8], and even
mimic the magnetic phenomena of natural materials [9–11].
Chiral metamaterials have received particular attention for
applications requiring a distinction between left and right
circularly polarized light [12–19]. Through manipulation
of these electric, magnetic, and magnetoelectric responses,
MMs have been used to demonstrate a variety of novel and
anomalous properties, including negative refraction [12,20]
and electromagnetic cloaking [21,22].

It is very likely, however, that the greatest potential for
unique electromagnetic media lies in the particular subclass

of MMs hybridized with nonlinear components—components
whose electromagnetic responses display relatively strong
nonlinear dependencies on the incident fields. Through careful
design, these nonlinear MMs are capable of combining
drastically reduced nonlinear length scales with the exotic
and configurable wave propagation that is characteristic of
MMs. Numerous studies have revealed the advantages of such
materials, promising greatly enhanced nonlinear interactions
[4,23–27], exotic parametric configurations [28–32], and
interesting soliton dynamics [33–36], to name a few. Indeed,
the parameter space for nonlinear MMs is virtually boundless,
often probing effects and phenomena that are conventionally
neglected.

An interesting subset of this parameter space lies in the
overlap between nonlinear and magnetoelectric responses, that
is, nonlinear interactions that involve coupling between both
electric and magnetic field components. To give context to this
subset of light-matter interactions, it is useful to consider the
usual form for the macroscopic polarization and magnetization
vectors. Following the convention of nonlinear optics, the ma-
terial response is expanded in a power series [37], in which the
higher-order contributions are taken to be proportional to the
product of two or more incident fields. Thus, we can write the
first-order (linear) polarization and magnetization vectors as

�P (t) =
∑

n

[
ε0 ¯̄χ (1)

ee (ωn) �E(ωn) + i

c
¯̄χ (1)
em(ωn) �H (ωn)

]
e−iωnt ,

(1)

μ0 �M(t) =
∑

n

[
μ0 ¯̄χ (1)

mm(ωn) �H (ωn) + i

c
¯̄χ (1)
me (ωn) �E(ωn)

]
e−iωnt ,

(2)

respectively, where ε0 and μ0 are the permittivity and
permeability of free space, c is the speed of light in free
space, the summation is taken over all positive and negative
frequencies ωn, and ¯̄χ (1) are the rank-2 linear susceptibility
tensors. Analogous to Eqs. (1) and (2), one can envision
higher-order polarizations that are proportional to both the
electric and magnetic fields, or even a combination thereof,
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constituting what we shall refer to as nonlinear magnetoelectric
coupling. In a three-wave mixing process, the addition of
magnetoelectric terms leads to a fourfold increase in the
number of independent nonlinear susceptibilities, as given by
the following definitions of the second-order polarization:

�P (2)(t) =
∑
qr

[
¯̄χ (2)
eee(ωs ; ωq,ωr ) : �E(ωq) �E(ωr )

+ ¯̄χ (2)
emm(ωs ; ωq,ωr ) : �H (ωq) �H (ωr )

+ ¯̄χ (2)
eem(ωs ; ωq,ωr ) : �E(ωq) �H (ωr )

+ ¯̄χ (2)
eme(ωs ; ωq,ωr ) : �H (ωq) �E(ωr )

]
e−iωs t , (3)

and second-order magnetization:

μ0 �M (2)(t) =
∑
qr

[
¯̄χ (2)
mmm(ωs ; ωq,ωr ) : �H (ωq) �H (ωr )

+ ¯̄χ (2)
mee(ωs ; ωq,ωr ) : �E(ωq) �E(ωr )

+ ¯̄χ (2)
mme(ωs ; ωq,ωr ) : �H (ωq) �E(ωr )

+ ¯̄χ (2)
mem(ωs ; ωq,ωr ) : �E(ωq) �H (ωr )

]
e−iωs t , (4)

where
∑

qr denotes a double sum over all positive and negative
frequencies, ‘:’ implies a tensor inner product between the
rank-3 second-order susceptibility tensors and the field
vectors, and ωs = ωq + ωr . For higher-order processes, the
number of possible susceptibility tensors grows exponentially.
While nonlinear magnetoelectric responses are known to exist
in natural materials [38–43], their applications are largely
limited to material studies [44–46]. Most device-oriented
applications of second-order nonlinear optics, such as
wave-mixing and parametric processes, utilize just χ (2)

eee-type
nonlinearities [37], stemming from the fact that, at optical
frequencies, the magnetic responses of natural materials tend
to be exceedingly weak.

In this paper, we show that MMs are not only able to
support the full set of nonlinear responses, including the
magnetoelectric terms, but can do so simultaneously and in
a variety of combinations, while retaining or even enhancing
the superior strengths of χ (2)

eee-type materials. Extrapolating
from the recent research in linear MMs, it is likely that a
wealth of phenomena not previously available will follow
from tailoring the eight nonlinear susceptibilities in Eqs. (3)
and (4), as well as their higher-order counterparts. To deal
with such a staggering increase in the available nonlinear
properties and subsequent dynamics, a coherent description
of the magnetoelectric nonlinearities, their effects, and their
origins is necessary. Towards this end, we investigate the
relation between the subwavelength geometry of the MM
inclusions, and the homogenized, constitutive properties of
the bulk nonlinear MM itself.

For a lossless medium composed of a cubic lattice of
MM inclusions formed from electrically polarizable mate-
rials, we make use of a coupled-mode theory formalism to
derive simple, quasianalytic expressions for the eight effective
magnetoelectric nonlinearities. For example, the effective
second-order susceptibility relating an electric polarization at
frequency ω3 to the product of an electric field at ω1 and a

magnetic field at ω2 is shown to be

χ (2)
eem(ω3; ω1,ω2) = i

a3

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �θ1(�r) �φ2(�r) · �θ3(�r)

]
dV,

(5)

where ¯̄χ (2)
loc(�r) is the MM’s local electric nonlinear susceptibil-

ity tensor and a is the lattice constant. �θn(�r) and �φn(�r) are,
roughly speaking, the microscopic electric fields produced
in response to a macroscopic electric or magnetic field,
respectively, at frequency ωn, and can be found analytically
and/or numerically from a Bloch analysis of a particular
MM geometry. These expressions for the second-order sus-
ceptibilities are verified against existing nonlinear parameter
retrieval methods [47,48], finding excellent agreement. We
extend the same procedure to the case of four-wave mixing
in MMs, finding analogous relations for the 16 effective
third-order magnetoelectric nonlinearities. Further study of
these expressions gives insight into the fundamental nature and
construction of the various magnetoelectric nonlinearities. In
particular, the formalism is demonstrated in the analysis of two
prototypical nonlinear magnetoelectric MMs, predicting the
dominant nonlinearities and wave-mixing processes supported
in each, in agreement with recent experiments [49]. Finally, we
give some consideration to possible applications of nonlinear
magnetoelectric coupling, using the examples of nonlinear
interference and electro-optic-like effects.

II. DERIVATION OF THE EFFECTIVE NONLINEAR
SUSCEPTIBILITIES

Our purpose in this section is to derive a homogeneous
description of three-wave mixing in a nonlinear MM with a
periodic microstructure of electrically polarizable materials.
In other words, we seek the set of effective nonlinear
properties that can exactly reproduce the MM’s macroscopic
nonlinear behavior. Conceptually, we correlate the nonlinear
scattering observed or computed for a MM to what would
be obtained from a homogeneous medium with defined linear
and nonlinear constitutive parameters. This approach to MM
effective-medium theory has been used with great success
to characterize linear MMs [50–56]; for example, a popular
MM retrieval procedure involves computing the scattered
(reflected and transmitted) waves from a thin slab of MM,
and inverting the Fresnel formulas to ascribe homogenized
values of the electric permittivity and magnetic permeability
to the otherwise inhomogeneous medium [51]. The approach
works extremely well to describe MMs formed with inclusions
of nearly any shape or material composition, under a restricted
set of assumptions. Alternatively, one can appeal to the basic
nature of effective-medium theory and apply averages over
the computed microscopic fields associated with a given
repeated MM cell to arrive at the homogenized, macroscopic
fields. From these macroscopic fields, the effective constitutive
parameters can be derived. Both methods have been shown
to be in agreement with each other and with conventional
effective-medium approaches [52]. Regardless of the method,
the final set of effective properties not only simplifies the
subsequent analysis of MMs, but provides invaluable intuition
into their design.
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While a nonlinear medium can be exceedingly complex,
coupling potentially an infinite set of harmonics or mix compo-
nents with varying polarization and propagation directions, it
is typically the case that the nonlinear response—even for most
MMs—is relatively small compared with the linear response.
Thus, the nonlinearity can be treated as a perturbation,
coupling together a restricted number of fundamental and har-
monic or mix waves. Under this assumption of a perturbative
nonlinear response, only a small subset of scattered waves
needs to be considered, making the problem far more tractable.
For a homogeneous nonlinear medium under continuous-wave
excitation, coupled-wave theory [57–59] yields relatively
straightforward expressions for the spatially varying wave am-
plitudes in terms of the underlying parameters of the medium.
When applied in integral form, coupled-mode theory can
provide similar expressions for an inhomogeneous medium
in terms of integrals over the local variations. In this way,
coupled-mode theory offers an approach—in the same spirit
as field averaging—for the identification of effective nonlinear
susceptibility parameters in a MM comprising periodically
positioned inclusions of arbitrary shape and composition.
Thus, the specific goals of this section are threefold: first,
to present coupled-wave theory in the present context; second,
to derive the coupled-mode expressions for a MM in terms of
its microscopic structure; and last, to equate these expressions
with those for a homogeneous medium described by (3) and
(4), yielding a set of eight relations for the eight macroscopic
second-order susceptibilities.

A. Coupled-wave equations for wave-mixing processes
in a homogeneous medium

It is useful to first consider how waves couple in a
homogeneous nonlinear medium, for which the nonlinearity—
taken as an electric second-order susceptibility—is relatively
weak. We imagine a three-wave mixing process involving
three monochromatic waves. In the absence of the nonlinearity,
the medium supports transverse electromagnetic (TEM) plane
waves, for which we employ the wave label μ to denote
frequency, polarization, and direction. Thus, each wave can
be described by electric field

�Eμ = Aμ�eμei�kμ·�r (6)

and magnetic field

�Hμ = Aμ
�hμei�kμ·�r , (7)

where Aμ is the wave amplitude, and �eμ and �hμ are the
corresponding polarization vectors. We take the polarization
vectors to be normalized such that

1
2 (�eμ × �h∗

μ + �e∗
μ × �hμ) = ŝμ, (8)

where ŝμ is the unit normal in the direction of the Poynting
vector. Due to the frequency decomposition convention used
here, the wave intensity is given by Iμ = 2Re( �Eμ × �H ∗

μ) =
2|Aμ|2. Treating the nonlinearity as a perturbation, we can
consider its effect on these traveling waves via the coupled-
wave equation (A9), derived from Maxwell’s equations in
Appendix A. In this way, we can consider the effect of waves
1 and 2, with frequencies ω1 and ω2, respectively, on wave 3

at the sum frequency ω3 = ω1 + ω2, according to

∇·[A3(�e3 × �h∗
3 + �e∗

3 × �h3)] = iω3[ �P (2) · �e∗
3 + �M (2) · �h∗

3]e−i�k3·�r .
(9)

Thus, the perturbation is seen to induce a spatial variance in
the sum-frequency mode amplitude A3. If we assume a purely
electric nonlinearity, such that

�P (2) = 2 ¯̄χ (2)
eee : �E1 �E2 = 2A1A2 ¯̄χ (2)

eee : �e1�e2e
i(�k1+�k2)·�r , (10)

and neglect �M (2), then the coupled-wave equation takes the
familiar form [59]

∇A3(�r) · ŝ3 = iω3A1(�r)A2(�r) ¯̄χ (2)
eee : �e1�e2 · �e∗

3e
i(�k1+�k2−�k3)·�r .

(11)
The above equation makes apparent the various interdependen-
cies of the wave amplitudes and momenta, and the medium
nonlinearity. Furthermore, we could consider the nonlinear
polarizations arising at the fundamental frequencies, resulting
in two additional coupled-wave equations. Together with
the proper initial conditions, these equations allow a full
description of the evolution of the three waves.

If we now replace the continuous nonlinear medium with
a MM, we expect to obtain an expression similar to that
above, with coupling proportional to an effective or averaged
nonlinear susceptibility, rather than the intrinsic susceptibility.
In fact, given the various responses available in MM inclusions,
Eq. (11) will in general include both a magnetic and an electric
response, in addition to magnetoelectric terms. These other
terms are usually not significant in conventional materials, but
can be dominant in structured MMs. Continuing with the ho-
mogeneous perspective, the above coupled-wave analysis can
be straightforwardly extended to consider the full contributions
from Eqs. (3) and (4), yielding

∇A3(�r) · ŝ3 = i�3,1,2A1(�r)A2(�r)ei(�k1+�k2−�k3)·�r , (12)

with coupling coefficient

�3,1,2 = ω3
[

¯̄χ (2)
eee : �e1�e2 · �e∗

3 + ¯̄χ (2)
eme : �h1�e2 · �e∗

3

+ ¯̄χ (2)
eem : �e1 �h2 · �e∗

3 + ¯̄χ (2)
emm : �h1 �h2 · �e∗

3

+ ¯̄χ (2)
mee : �e1�e2 · �h∗

3 + ¯̄χ (2)
mme : �h1�e2 · �h∗

3

+ ¯̄χ (2)
mem : �e1 �h2 · �h∗

3 + ¯̄χ (2)
mmm : �h1 �h2 · �h∗

3

]
. (13)

B. Coupled-mode equations for wave-mixing processes
in a periodic medium

We consider a MM as being formed from an inclusion that
is infinitely repeated in three dimensions. For such a periodic
medium, the wave equation admits solutions in the form of
Bloch modes indexed by the Bloch wave vector �k. When the
wavelength is much larger than the inclusion size and lattice
constant, it becomes useful to average over the local fields
and parameters associated with the inclusions, arriving at a
set of macroscopic fields that are defined only at the edges
and faces of the unit cells. These fields thus naturally satisfy a
set of finite-difference equations, which, in the limit of weak
nonlinearity, can be extended using coupled-mode theory to
describe the fields resulting from wave-mixing processes, such
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as second-harmonic generation (SHG), sum-frequency gener-
ation (SFG), and difference-frequency generation (DFG).

We can model our MM as an infinite medium described by
a periodic relative permittivity ε(�r) and second-order electric
nonlinearity χ

(2)
loc(�r), with implicit frequency dependencies. For

simplicity, we will assume the unit cell is cubic with lattice
constant a and primitive lattice vectors oriented along the three
Cartesian axes, such that ε(�r) = ε(�r + �R) for lattice vector
�R = (n1x̂ + n2ŷ + n3ẑ)a, where n1, n2, and n3 are integers.

Thus, the electric and magnetic fields corresponding to a
particular Bloch mode μ can be written as

�Eμ(�r) = Aμ�eμ(�r) exp(i�kμ · �r),
(14)�Hμ(�r) = Aμ

�hμ(�r) exp(i�kμ · �r),

where Aμ is the mode amplitude, kμ is the Bloch wave
vector, and �eμ(�r) and �hμ(�r) are periodic electric and magnetic
Bloch functions, respectively, with the same periodicity as
the MM lattice. The Bloch solutions form an orthogonal set of
functions [60], allowing us to treat the Bloch modes in analogy
to guided modes in coupled-mode theory [58,59]. Moreover,
we assume that only the fundamental or lowest Bloch modes
play a significant role in wave propagation and scattering, as
is usual for MMs.

At this point, it is appropriate to apply several constraints
to the total fields in the presence of the perturbation. Since our
goal is characterization of the effective nonlinear tensors, it is
desirable to probe the elements of these tensors independently.
Thus, at any time, we will consider only the subset of modes
necessary to probe a single tensor element of each suscep-
tibility, that is, just three modes with specified frequencies,
polarizations, and propagation directions. This is very similar
to what is done in linear retrieval methods [52], and is often
enforced in simulations by appropriate boundary conditions.
Thus, we derive the rate equations for a particular Bloch mode
with frequency ω3, driven by Bloch modes at ω1 and ω2, such
that ω1 + ω2 = ω3. Finally, we assume a sufficiently weak
nonlinearity so that the mode amplitudes are slowly varying
over a unit cell, allowing us to expand the fields within a unit
cell in terms of the Bloch modes of the periodic, linear medium.

As before, we start by considering propagating modes at
three distinct frequencies, whose coupling in the presence of
a weak perturbation can be described by Eq. (A9). Using the
relations in (14), this gives

∇ · {Aμ[�e3(�r) × �h3(�r)∗ + �e3(�r)∗ × �h3(�r)]}
= iω3[ �P (2)(�r) · �e3(�r)∗ + �M (2)(�r) · �h3(�r)∗]e−i�k3·�r . (15)

Since we are considering MMs composed of purely electrically
polarizable materials, �M (2)(�r) can be neglected, while the
second-order polarization is given by

�P (2)(�r) = 2A1A2 ¯̄χ (2)
loc(�r) : �e1(�r)�e2(�r)ei(�k1+�k2)·�r . (16)

However, a similar procedure can be employed for MMs
composed of intrinsically magnetic materials.

Due to the inhomogeneous nature of the MM, the Bloch
modes may contain rapidly varying fields that are generally
unimportant in terms of predicting wave scattering behavior.
It is thus convenient to average these rapidly varying field
components over a unit cell, and instead follow the behavior

of slowly varying (or macroscopic) fields at a discrete number
of points that form a lattice with dimension a. So long as
a � λ, the discreteness of the lattice is not of significance,
though effects due to spatial dispersion may enter, especially
near material resonances (see Sec. V).

The integral formulation of coupled-mode theory lends
itself naturally to this type of averaging. Moreover, for the
Bloch modes defined in (14), it is natural to consider the mode
amplitudes Aμ as slowly varying envelopes in the presence
of the nonlinear perturbation, while the rapid variations in
field induced by local inhomogeneity are completely contained
within the Bloch functions �eμ(�r) and �hμ(�r). Thus, we switch to
the integral form of Eq. (A9) and allow the mode amplitudes
to vary explicitly with the spatial coordinates �r , yielding∫ ∫ ∫

V0

∇ · {A3(�r)[�e3(�r) × �h3(�r)∗ + �e3(�r)∗ × �h3(�r)]}dV

= 2iω3

∫ ∫ ∫
V0

[A1(�r)A2(�r) ¯̄χ (2)
loc(�r) : �e1(�r)�e2(�r)

· �e3(�r)∗]ei(�k1+�k2−�k3)·�rdV, (17)

where the volume V0 is taken to be a single unit cell, centered
about the origin 0. We can distribute the divergence operator
on the left-hand side, yielding∫ ∫ ∫

V0

∇ · {A3(�r)[�e3(�r) × �h3(�r)∗ + �e3(�r)∗ × �h3(�r)]}dV

=
∫ ∫ ∫

V0

∇A3(�r) · [�e3(�r) × �h3(�r)∗ + �e3(�r)∗ × �h3(�r)]dV

+
∫ ∫ ∫

V0

A3(�r)∇ · [�e3(�r) × �h3(�r)∗ + �e3(�r)∗ × �h3(�r)]dV.

(18)

The integrand of the second term on the left-hand side vanishes
identically, since it is proportional to the divergence of the
Poynting vector of an unperturbed mode, leaving only the term
proportional to ∇A3(�r). Invoking the slowly varying amplitude
approximation, we can expand ∇A3(�r) about the origin in a
Taylor series. Keeping only the lowest-order term, we thus
replace (17) with the approximate equation

∇A3(0) ·
∫ ∫ ∫

V0

[�e3(�r) × �h3(�r)∗ + �e3(�r)∗ × �h3(�r)]dV

≈ 2iω3

∫ ∫ ∫
V0

[A1(�r)A2(�r) ¯̄χ (2)
loc(�r) : �e1(�r)�e2(�r)

· �e3(�r)∗]ei(�k1+�k2−�k3)·�rdV . (19)

Written this way, the integral on the left-hand side resembles
the volume averaged Poynting vector for the unperturbed
mode. Consistent with the homogeneous coupled-wave for-
malism, we introduce the normalization condition

1

2a3

∫ ∫ ∫
V0

[�eμ(�r) × �hμ(�r)∗ + �eμ(�r)∗ × �hμ(�r)]dV = ŝμ, (20)

such that ŝμ represents the unit normal in the direction of the
averaged Poynting vector for the unperturbed mode μ.

In order to reduce the right-hand side of Eq. (19), we
similarly expand the fundamental mode amplitudes in a Taylor
series, and again, invoking the slowly varying amplitude
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approximation, keep only the lowest-order terms. Thus, we
arrive at the following relation:

∇A3(0) · ŝ3 = i�3,1,2A1(0)A2(0), (21)

with coupling coefficients

�3,1,2 = ω3

a3

∫ ∫ ∫
V0

[
¯̄χ (2)
loc(�r):�e1(�r)�e2(�r) · �e∗

3(�r)ei(�k1+�k2−�k3)·�r]dV.

(22)
We can then describe the coupling at any unit cell in the infinite
lattice by translating Eq. (21) by lattice vector �R, yielding

∇A3( �R) · ŝ3 = i�3,1,2A1( �R)A2( �R)ei(�k1+�k2−�k3)· �R. (23)

Due to the periodicity of the Bloch functions and local material
properties, the coupling coefficient �3,1,2 is invariant to the
unit cell at which it is defined, and effectively replaces the
homogeneous nonlinear susceptibility of the previous section.
In other words, Eq. (24) gives an approximate relation for
the rate of change of wave 3 in the direction of energy
flow, proportional to the product of the fundamental wave
amplitudes, the momenta mismatch, and an averaged coupling
coefficient, on a discrete lattice that is defined by the MM’s
own structural periodicity.

The form of Eq. (23) is easily converted to a finite-
difference system of equations by replacing the gradient with
an appropriate finite-difference approximation. Alternatively,
in the limit a → 0, we can take �R → �r , and thus Eq. (23)
approaches the continuous form

∇A3(�r) · ŝ3 = i�3,1,2A1(�r)A2(�r)ei(�k1+�k2−�k3)·�r , (24)

as expected. It is clear that, from such a perspective, the
detailed MM structure can be largely ignored once �3,1,2 is ob-
tained. Thus, the coupled-mode equations for a nonlinear MM,
within the limits discussed above, are largely indistinguishable
from the coupled-wave equations for a homogeneous nonlinear
medium.

C. The effective second-order susceptibilities

In this section, we combine the results of the previous
two sections to arrive at expressions for the eight constitutive
second-order susceptibilities describing the nonlinear MM as
a homogeneous medium. As is the usual case for homogeniza-
tion of MMs, we require that the behavior of a single unit cell
be perfectly replicated by an equivalent slab of homogeneous
material. To simplify the analysis, we will use the continuous
forms of the nonlinear coupling in both cases, thus implying
the limit a → 0 on the resulting equations. The more general
form will be handled in Sec. V. Moreover, we will consider
the special case where the three Bloch modes propagate along
the z axis, with macroscopic electric fields polarized along the
x axis, and macroscopic magnetic fields polarized along the y

axis, so that, from the homogeneous perspective, the equations
become scalar.

From inspection of the terms in Eqs. (12) and (24),
homogenization requires two steps. First, we must establish
equivalence in the linear wave propagation between the
homogeneous and MM systems, consisting of the particular
wave vectors and associated fields. Thus, we invoke standard
eigenfrequency analyses to establish the wave vectors and

Bloch functions in the periodic medium. Consistent with Smith
and Pendry’s field-averaging method [52], the macroscopic
electric and magnetic fields of our homogeneous system, then,
are given by line integrals along the borders of the unit cell.
This gives us the following relation between macroscopic and
local electric fields:

ẽμ = 1

a

∫ + a
2

− a
2

[
�eμ

(
x, ± a

2
, ± a

2

)
· x̂

]
dx, (25)

where the tilde is used to denote a macroscopic quantity. The
macroscopic magnetic field is likewise defined by

h̃μ = 1

a

∫ + a
2

− a
2

[
�hμ

(
± a

2
,y, ± a

2

)
· ŷ

]
dy. (26)

From here, we can define the wave impedance for mode μ as

Zμ = ẽμ

h̃μ

. (27)

Second, we must establish equivalence in the nonlinear
behavior between the MM and homogeneous mediums. In the
limit a → 0, the nonlinear behavior is completely embodied
by the coupling coefficients given in (13) and (22). Thus,
substituting the macroscopic fields defined above into (13),
we equate (13) and (22) and cancel the like terms to find

1

a3

∫ ∫ ∫
V0

[
¯̄χ (2)
loc(�r) : �e1(�r)�e2(�r) · �e∗

3(�r)ei(k1+k2−k3)z
]
dV

= [
χ (2)

eeeẽ1ẽ2ẽ
∗
3 + χ (2)

emeh̃1ẽ2ẽ
∗
3 + χ (2)

eemẽ1h̃2ẽ
∗
3

+χ (2)
emmh̃1h̃2ẽ

∗
3 + χ (2)

meeẽ1ẽ2h̃
∗
3 + χ (2)

mmeh̃1ẽ2h̃
∗
3

+χ (2)
memẽ1h̃2h̃

∗
3 + χ (2)

mmmh̃1h̃2h̃
∗
3

]
. (28)

However, this single equation is not enough to solve for
the eight as-yet-undetermined second-order susceptibilities.
To introduce additional equations while still probing the
same effective tensor elements, we note that all of the
forward propagating modes considered up to now must have
a conjugate mode that propagates in the opposite direction.
The above expressions, moreover, are easily extended to allow
for modes propagating in either the positive or negative z

directions. Enforcing equality for each combination of modes
independently, i.e., eight in total, we obtain a system of eight
equations that can be written in compact form as

1

a3

∫ ∫ ∫
V0

[
¯̄χ (2)
loc(�r) : �eρ(�r)�eψ (�r) · �e∗

ν (�r)ei(kρ+kψ−kν )z
]
dV

= [
χ (2)

eeeẽρ ẽψ ẽ∗
ν + χ (2)

emeh̃ρ ẽψ ẽ∗
ν + χ (2)

eemẽρh̃ψ ẽ∗
ν

+χ (2)
emmh̃ρh̃ψ ẽ∗

ν + χ (2)
meeẽρ ẽψ h̃∗

ν + χ (2)
mmeh̃ρ ẽψ h̃∗

ν

+χ (2)
memẽρh̃ψ h̃∗

ν + χ (2)
mmmh̃ρh̃ψ h̃∗

ν

]
, (29)

for all combinations of ν = ±3, ρ = ±1, and ψ = ±2, where
a negative sign denotes a mode with identical frequency
and polarization but propagating in the negative z direction.
The eight equations represented by (29) contain the eight
undetermined effective nonlinearities and, in the most general
case, can be solved by linear algebra.

This set of equations can be further simplified if we assume
the unit cell’s linear local material properties are purely real,
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that is, there is no loss or gain in the system. In this case,
the symmetry in the Bloch wave equation allows us to write
the backward Bloch modes directly from the forward Bloch
modes at the same frequency, such that

�e−n(�r) = �e∗
n(�r) and �h−n(�r) = −�h∗

n(�r), (30)

for n = 1,2,3. Together with Eq. (27) and normalization
condition (20), this implies ẽ±n = √

Zn and h̃±n = ±1/
√

Zn.
Using these relations in (29), the equations can be rear-

ranged to solve for the effective second-order susceptibilities
in closed form, finally yielding the following expressions for
the effective electric, magnetic, and magnetoelectric nonlinear
susceptibilities:

χ (2)
eee(ω3; ω1,ω2) = 1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ1(�r)�θ2(�r) · �θ3(�r)

]
,

(31)

χ (2)
emm(ω3; ω1,ω2)

= − 1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r): �φ1(�r) �φ2(�r) · �θ3(�r)

]
, (32)

χ (2)
eem(ω3; ω1,ω2)

= i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ1(�r) �φ2(�r) · �θ3(�r)

]
, (33)

χ (2)
eme(ω3; ω1,ω2)

= i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �φ1(�r)�θ2(�r) · �θ3(�r)

]
, (34)

χ (2)
mmm(ω3; ω1,ω2)

= i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �φ1(�r) �φ2(�r) · �φ3(�r)

]
, (35)

χ (2)
mee(ω3; ω1,ω2)

= − i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ1(�r)�θ2(�r) · �φ3(�r)

]
, (36)

χ (2)
mme(ω3; ω1,ω2)

= 1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �φ1(�r)�θ2(�r) · �φ3(�r)

]
, (37)

χ (2)
mem(ω3; ω1,ω2)

= 1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ1(�r) �φ2(�r) · �φ3(�r)

]
, (38)

where we have introduced the quantities

�θn(�r) = 1

2

[ �en(�r)

ẽn

eiknz + �e−n(�r)

ẽ−n

e−iknz

]
= Re

[ �en(�r)

ẽn

eiknz

]

(39)

and �φn(�r) = 1

2i

[ �en(�r)

h̃n

eiknz + �e−n(�r)

h̃−n

e−iknz

]

= Im

[ �en(�r)

h̃n

eiknz

]
. (40)

These final forms for the second-order susceptibility can be
understood from an intuitive, if informal, perspective, by
considering �θn(�r) and �φn(�r) as standing-wave patterns. From a
macroscopic perspective, �θn(�r) corresponds to a standing-wave
distribution with an electric field antinode at the unit-cell
center. �φn(�r) is then the electric field distribution correspond-
ing to a macroscopic magnetic field antinode at the unit-cell
center. Thus, by specifying the dominant macroscopic fields,
the appropriate nonlinearity can be related quite naturally to the
corresponding microscopic fields. In this way, the macroscopic
field symmetries are enforced in the local response, such
that the homogenized nonlinearities are unambiguous. As an
example, typical plots of �θ (�r) and �φ(�r) are shown in Fig. 1
for a MM consisting of high-dielectric spheres, obtained from
eigenfrequency simulations.

This final result for the effective second-order magnetoelec-
tric susceptibilities is very satisfying and highly intuitive. By
rearranging the Bloch modes, we are able to describe the local
electric fields that are, from a macroscopic perspective, either
electrically or magnetically induced. The effective response
is completely characterized by the overlap of these local field
distributions within the nonlinear component of the unit cell. In
short, Eqs. (31)–(38) reveal that, as expected, clever structuring
of MM inclusions can give rise to complex macroscopic
nonlinear behaviors of a fundamentally different nature than
the constituents.

high

low

(a) )c()b(

R

r

r r

E

k

H

E

k

a

FIG. 1. (Color online) (a) The unit cell of an example MM composed of high-dielectric spheres, illustrating the coordinate (�r) and lattice
( �R) vectors. (b) and (c) represent typical cross sections of �θ (�r) and �φ(�r), respectively, obtained from eigenfrequency simulations for spheres
with ε/ε0 = 300 and diameter a/3 embedded in free space, showing the expected electric- and magnetic-type responses.
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The above analysis assumed propagation along the z axis
for simplicity, as well as a homogenized medium whose
normal modes, in the linear regime, are linearly polarized plane
waves. Thus, while the effective nonlinear susceptibilities are
themselves tensors, the above procedure only probes a single
element of each tensor, determined by the polarizations of
the macroscopic waves, i.e., the χ (2)

eee in the above formalism
is actually χ (2)

eee,xxx , χ (2)
mmm is χ (2)

mmm,yyy , etc. However, even if
the local nonlinearity is diagonal, the subwavelength structure
of the MM can give rise to overlap between the different
polarizations and thus nonzero cross terms in the effective
tensors [32,61]. To recover the other elements of the suscep-
tibility tensors, the polarization and direction of each wave
can be manipulated successively, and the above procedure
repeated independently for each tensor element. Additionally,
if the normal modes of the linear homogenized medium cannot
be decomposed into linearly polarized plane waves, as is
the case, for example, in chiral MMs, an appropriate basis
for homogenization, with well-defined wave impedances and
wave vectors, should be used instead.

We note here that the decision to write the equations of
motion for the fields at ω3 is an arbitrary one. However, certain
permutation symmetries and self-consistencies are readily
found in the above expressions. Assuming ω3 > ω2 > ω1 > 0,
permutation of the fundamental waves gives the same ef-
fective nonlinearity, i.e., χ (2)

eme(ω3; ω1,ω2) = χ (2)
eem(ω3; ω2,ω1).

Additionally, the complementary nonlinearities, by which we
mean the nonlinearities describing the three-wave mixing
process at the fundamental frequencies, are the conjugate
of the first, i.e., χ (2)

eme(ω3; ω1,ω2) = [χ (2)
mee(ω1; ω3, − ω2)]∗ =

[χ (2)
eem(ω2; ω3, − ω1)]∗, where we have used the constraint of

real total fields to relate the negative and positive frequency
components. These properties of the nonlinear susceptibilities
can be shown to ensure the proper photon and energy

conservation requirements, as in the Manley-Rowe relations
[37].

Finally, it is also worth noting that the units of the second-
order susceptibilities are not all the same, but have been chosen
to ensure the permutation symmetries discussed above. As seen
in Eq. (13), each nonlinear susceptibility enters the equation
for the coupling coefficient with a different leading coefficient,
related to the wave impedances at the involved frequencies.
Using Eq. (27), it is convenient to define individual coupling
coefficients,

γg3g1g2 = ω3

√
G1G2G3χ

(2)
g3g1g2

, (41)

where Gn = Zn for gn = e, and Gn = Yn = 1/Zn for gn = m,
such that

�ν,ρ,ψ = γ (2)
eee + sgn(ρ)γ (2)

eme + sgn(ψ)γ (2)
eem + sgn(ρψ)γ (2)

emm

+ sgn(ν)γ (2)
mee + sgn(ρν)γ (2)

mme + sgn(ψν)γ (2)
mem

+ sgn(ρψν)γ (2)
mmm, (42)

where sgn() is the signum function. The eight individual cou-
pling coefficients have units of m−1(W/m2)−1/2, and provide
a means for direct comparison of the relative magnitudes and
phases of the various second-order susceptibilities. Also, it is
worth noting that the contributions from each nonlinearity to
�ν,ρ,ψ are uniquely dependent on the propagation directions
of the three waves, denoted in our convention by the sign of
the subscripts: a fact responsible for interesting interference
effects in the presence of multiple nonlinearities, as discussed
in Sec. IV A.

D. The effective third-order susceptibilities

Analogous to the second-order material responses of
Eqs. (3) and (4), let us consider a third-order polarization
and magnetization of the form

�P (3)(t) =
∑
pqr

[
¯̄χ (3)
eeee(ωs ; ωp,ωq,ωr )

... �E(ωp) �E(ωq) �E(ωr ) + ¯̄χ (3)
eemm(ωs ; ωp,ωq,ωr )

... �E(ωp) �H (ωq) �H (ωr )

+ ¯̄χ (3)
eeem(ωs ; ωp,ωq,ωr )

... �E(ωp) �E(ωq) �H (ωr ) + ¯̄χ (3)
eeme(ωs ; ωp,ωq,ωr )

... �E(ωp) �H (ωq) �E(ωr )

+ ¯̄χ (3)
emee(ωs ; ωp,ωq,ωr )

... �H (ωp) �E(ωq) �E(ωr ) + ¯̄χ (3)
emmm(ωs ; ωpωq,ωr )

... �H (ωp) �H (ωq) �H (ωr )

+ ¯̄χ (3)
emem(ωs ; ωp,ωq,ωr )

... �H (ωp) �E(ωq) �H (ωr ) + ¯̄χ (3)
emme(ωs ; ωp,ωq,ωr )

... �H (ωp) �H (ωq) �E(ωr )
]

exp(−iωst), (43)

μ0 �M (3)(t) =
∑
pqr

[
¯̄χ (3)
mmmm(ωs ; ωp,ωq,ωr )

... �H (ωp) �H (ωq) �H (ωr ) + ¯̄χ (3)
mmee(ωs ; ωp,ωq,ωr )

... �H (ωp) �E(ωq) �E(ωr )

+ ¯̄χ (3)
mmme(ωs ; ωp,ωq,ωr )

... �H (ωp) �H (ωq) �E(ωr ) + ¯̄χ (3)
mmem(ωs ; ωp,ωq,ωr )

... �H (ωp) �E(ωq) �H (ωr )

+ ¯̄χ (3)
memm(ωs ; ωp,ωq,ωr )

... �E(ωp) �H (ωq) �H (ωr ) + ¯̄χ (3)
meee(ωs ; ωp,ωq,ωr )

... �E(ωp) �E(ωq) �E(ωr )

+ ¯̄χ (3)
meme(ωs ; ωp,ωq,ωr )

... �E(ωp) �H (ωq) �E(ωr ) + ¯̄χ (3)
meem(ωs ; ωp,ωq,ωr )

... �E(ωp) �E(ωq) �H (ωr )
]

exp(−iωst), (44)

where
∑

pqr denotes a triple sum, and ωs = ωp + ωq + ωr , thus defining 16 third-order susceptibility tensors of rank 4. The
same procedure as in the previous section can be carried out for four-wave mixing in a MM composed of a periodic electric
third-order susceptibility, ¯̄χ (3)

loc(�r). This gives a system of 16 equations relating the microscopic Bloch field distributions to the
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16 macroscopic susceptibilities, represented by

1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (3)
loc(�r)

...�eρ(�r)�eψ (�r)�eζ (�r) · �e∗
ν (�r)

]

= χ (3)
eeeeẽρ ẽψ ẽζ ẽν + χ (3)

eemeẽρ h̃ψ ẽζ ẽν + χ (3)
eeemẽρ ẽψ h̃ζ ẽν + χ (3)

eemmẽρh̃ψ h̃ζ ẽν + χ (3)
meeeẽρ ẽψ ẽζ h̃ν + χ (3)

memeẽρh̃ψ ẽζ h̃ν

+χ (3)
meemẽρ ẽψ h̃ζ h̃ν + χ (3)

memmẽρh̃ψ h̃ζ h̃ν + χ (3)
emeeh̃ρ ẽψ ẽζ ẽν + χ (3)

emmeh̃ρh̃ψ ẽζ ẽν + χ (3)
ememh̃ρ ẽψ h̃ζ ẽν + χ (3)

emmmh̃ρh̃ψ h̃ζ ẽν

+χ (3)
mmeeh̃ρ ẽψ ẽζ h̃ν + χ (3)

mmmeh̃ρh̃ψ ẽζ h̃ν + χ (3)
mmemh̃ρ ẽψ h̃ζ h̃ν + χ (3)

mmmmh̃ρh̃ψ h̃ζ h̃ν, (45)

for ρ = ±1, ψ = ±2, ζ = ±3, ν = ±4. As before, assuming
lossless materials, 16 closed-form expressions can be derived
for the effective third-order susceptibilities of the form

χ (3)
eeme(ω4; ω1,ω2,ω3)

= i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (3)
loc(�r)

...�θ1(�r) �φ2(�r)�θ3(�r) · �θ4(�r)
]
. (46)

For brevity, and due to similarities with the second-order
expressions, we will omit the equations for the 15 other
third-order susceptibilities.

III. NUMERICAL EXAMPLES

According to (31)–(38), the eight homogenized nonlinear
magnetoelectric susceptibilities can be evaluated directly from
the Bloch modes at the three frequencies, found either
analytically or numerically. Moreover, since the quantities
in the denominators of (39) and (40) are explicitly derived
from the numerators, the phases and amplitudes of �θn(�r)
and �φn(�r) are automatically normalized, precluding the usual
problems associated with ill-defined Bloch modes. Thus,
when calculating the effective nonlinearities from numerical
simulations, the computed Bloch modes can be used directly in
(39) and (40), facilitating the homogenization process. Thus,
the effective linear and nonlinear properties describing three-
wave mixing in a MM can be characterized from the results
of just three eigenfrequency simulations. In this section, we
apply this procedure to several example MMs, demonstrating

the ability of these structures to support electric, magnetic, and
magnetoelectric second-order responses.

A. The split-ring resonator

In order to validate the above expressions for the second-
order susceptibilities, we first apply the analysis to a well-
researched nonlinear MM: the split-ring resonator (SRR). For
simplicity, we assume the local second-order response of the
SRR is zero everywhere except for a small dielectric slab
loaded into the structure’s capacitive gap, modeled by ε/ε0 =
25 and χ

(2)
loc,zzz/ε0 = 1 pm/V. The background dielectric is

taken to be free space. To allow extrapolation over a wide
range of frequencies, the SRR’s dimensions, given in Fig. 2(a),
are related to the lattice constant a, and the results are
given as a function of normalized frequencies, ωna/2πc. To
validate the use of Eq. (30), dielectric losses are neglected,
and the metal ring is modeled by a perfect electric con-
ductor with thickness a/100. Using COMSOL MULTIPHYSICS,
we employ eigenfrequency simulations on the unit cell to
determine the lowest forward propagating Bloch modes and
eigenfrequencies over a range of wave vectors, assuming
the incident fields are polarized according to Fig. 2(a).
In this way, we first determine the wave vectors and wave
impedances as a function of frequency, according to Ref. [52].
From previous theoretical investigations [27], we know that,
when excited by a fundamental frequency (FF) close to the
magnetic resonance, SHG is mediated by the purely magnetic
nonlinearity, χ (2)

mmm. Moreover, due to the small size and high
permittivity of the nonlinear dielectric, the ẑ component of
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FIG. 2. (Color online) (a) Nonlinear SRR used in validating Eq. (35). Plots of the SRR’s retrieved (b) linear and (c) nonlinear properties
via both scattering and eigenfrequency simulations. The effective χ (2)

mmm(2ω; ω,ω) is retrieved by both the nonlinear transfer matrix method and
Eq. (35), showing excellent agreement. The grayed frequency bands where no data is plotted correspond to either the FF or second-harmonic
falling in the SRR’s stop band that extends over a narrow range of frequencies above the magnetic resonance.
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FIG. 3. (Color online) (a) The doubly-split nonlinear SRR used for both the symmetric and antisymmetric configurations. (b) The retrieved
linear properties from eigenfrequency simulations. The second-order susceptibilities of the (c) symmetric and (d) antisymmetric SRRs for
SHG, calculated via (31)–(38). Due to the degenerate frequencies involved in SHG, χ (2)

eem and χ (2)
eme are identical, as are χ (2)

mem and χ (2)
mme. (e) and

(f) show field maps of resonant SHG from infinite columns of symmetric and antisymmetric SRRs, respectively.

the electric field within the gap is nearly constant, allowing
the integral in Eq. (35) to be approximated by the product
of the average values of �φn within the gap and the nonlinear
dielectric’s volume. Thus, we record the eigenfrequency and
�φn · ẑ in the gap for a wide range of wave vectors, interpolating
the results to determine χ (2)

mmm(2ω; ω,ω) as a function of the
normalized FF ωa/2πc, according to Eq. (35).

For comparison, we perform full-wave numerical simula-
tions, using the existing nonlinear parameter retrieval method
based on transfer matrices [48,62]. This method has been
previously established for the retrieval of purely magnetic
nonlinearities [47,63]. Thus, we retrieve the effective magnetic
nonlinearity χ (2)

mmm(2ω; ω,ω) from nonlinear scattering simula-
tions for a single unit cell with appropriate periodic boundary
conditions. The linear properties are likewise determined from
the linear scattering parameters [51]. The results of both
retrieval techniques are presented in Figs. 2(b) and 2(c).
The excellent agreement between the two methods lends
validity to the procedure employed here. Small discrepancies
between the two approaches can be attributed to the coupling
between neighboring unit cells in the direction of propagation,
neglected in the scattering simulations.

B. Prototypical nonlinear magnetoelectric metamaterial

Recently, nonlinear magnetoelectric coupling was demon-
strated in a MM at microwave frequencies [49]. The MMs were
varactor loaded split-ring resonators (VLSRRs), consisting
of copper ring resonators with two capacitive gaps on either
side. The varactor diodes provided the second-order response.
Unlike the previous SRR, the gaps were oriented such that
both electric and magnetic fields could excite voltages across

the varactors, allowing nonlinear magnetoelectric coupling to
take place.

Here, we analyze the analogous doubly-split ring resonator
depicted in Fig. 3(a), in which the capacitive gaps are loaded
with small nonlinear dielectric films, as in the previous
example. The effective linear properties are obtained via field
averaging and plotted in Fig. 3(b), showing the expected
magnetic resonance. In terms of the nonlinear properties,
we consider two structures, corresponding to orientation of
the nonlinear dielectrics in the same direction (symmet-
ric SRR) or in opposite directions (antisymmetric SRR).
These configurations imply even and odd symmetries in the
nonlinear properties with respect to the z coordinate, i.e.,
¯̄χ (2)
loc(x,y,z) = ¯̄χ (2)

loc(x,y, − z) and ¯̄χ (2)
loc(x,y,z) = − ¯̄χ (2)

loc(x,y, −
z), respectively. We follow the same procedure as before, but
evaluating all of the second-order susceptibilities for both
configurations. The magnitudes of the strongest four γ are
plotted in Figs. 3(c) and 3(d), normalized by the value for a
solid block of the nonlinear dielectric, γloc.

At the resonance frequency, we see the dominant nonlinear
process to be χ (2)

mmm(2ω; ω,ω) in the antisymmetric SRR,
and χ (2)

emm(2ω; ω,ω) in the symmetric SRR, in agreement
with experiments on analogous VLSRRs [49]. The nature of
these differing nonlinearities is further illustrated in Figs. 3(e)
and 3(f), which give a cross section of the SHG electric fields
outside of the MM. These SHG field maps are generated
from an infinite column of SRRs resonantly excited by a FF
plane wave with the indicated polarization and direction. The
electric- and magnetic-dipole-like patterns are clearly evident
in the SHG radiation patterns.

These plots display a number of other prominent features.
In particular, the contrasting symmetries in the nonlinear

033816-9



ROSE, LAROUCHE, POUTRINA, AND SMITH PHYSICAL REVIEW A 86, 033816 (2012)

properties of the two unit cells result in two distinct sets
of nonlinear susceptibilities. The susceptibilities are highly
dispersive, with different nonlinearities dominant at different
frequencies. On the one hand, since the magnetic induction of
the SRR must go to zero as the frequencies go to dc, we see that
all of the nonlinearities vanish in this limit, with the exception
of χ (2)

eee, which flattens out to a constant value nearly equal to
the nonlinear dielectric alone. This nonresonant enhancement
of the electric nonlinearity is impressive when considering that
the nonlinear dielectric makes up less than 1 part in 50,000 of
the MM’s volume. On the other hand, when one of the involved
frequencies is tuned near the magnetic-resonance frequency,
we see that the overall nonlinear activity of the MM exceeds
that of the nonlinear dielectric by orders of magnitude.

IV. EXAMPLES OF NONLINEAR MAGNETOELECTRIC
PHENOMENA

Up until now, we have focused on the problem of con-
structing and characterizing nonlinear magnetoelectric MMs,
but have avoided discussing how the full set of nonlinear
susceptibilities can be used to achieve unique and interesting
phenomena. Indeed, the parameter space that Eqs. (31)–(38)
encompass is gigantic, especially when the tensorial nature of
the nonlinear susceptibilities is considered. While it is beyond
the scope of this paper to search out and categorize the range
of phenomena that nonlinear magnetoelectric MMs can give
rise to, this section is devoted to two demonstrative examples.
First, we consider interference effects in MMs possessing two
nonlinear susceptibilities of comparable magnitude. Having
direct analogues in natural materials, nonlinear interference
effectively tailors the harmonic and mix wave generation by
suppressing and/or enhancing generation along certain direc-
tions, especially in optically thin slabs. Second, we analyze
electro-optic effects in such MMs under the application of a
static electric field. We show that, depending on geometry,
the linear permittivity, permeability, and/or magnetoelectric
coupling coefficient can be tuned by applying a voltage to the
bulk MM. These examples are further illustrated through the
prototypical SRRs of Sec. III B.

A. Nonlinear interference

From Fig. 3, it is clear that certain MM designs can
support nonlinear processes with contributions from several
effective nonlinear susceptibilities. The fields generated by
the different nonlinearities can potentially interfere with each
other, either enhancing or suppressing harmonic and mix wave
generation. Nonlinear interference has been demonstrated in
certain antiferromagnetic compounds [44–46], for example,
in which χ (2)

eee and χ (2)
mee are found to have similar magnitudes.

The process, however, is generally very weak and has been
used mostly in probing the antiferromagnetic domains in such
materials, using the fact that χ (2)

eee reverses sign when going
from one domain to another [64].

To offer a concrete example of nonlinear interference, let us
consider collinear DFG in a homogeneous (or homogenized)
medium, wherein forward propagating waves at ω3 and ω2

generate forward and backward waves at the frequency ω1 =
ω3 − ω2. If we assume a sufficiently weak nonlinearity, we
can take A3 and A2 to be constant, known as the nondepleted

pump approximation. Assuming a slab of length L and no
initial input at ω1, Eq. (12) can be solved to give the intensities
of the forward and backward DFG waves,

I1(z) = 1

2
I3I2|�1,3,2∗ |2sinc2

[
(k3 − k2 − k1)

z

2

]
z2, (47)

I−1(z)

= 1

2
I3I2|�−1,3,2∗ |2sinc2

[
(k3 − k2 + k1)

L − z

2

]
(L − z)2,

(48)

where, since we are considering DFG, the notation 2∗ is used
to indicate a negative frequency in calculating the coupling
coefficient. Nonlinear interference, then, refers to the fact
that the coupling coefficients in Eqs. (47) and (48) are
superpositions of the eight second-order susceptibilities, which
can add constructively or destructively in the generation of the
forward and backward waves, A±1, depending on the relative
phases and magnitudes of the susceptibilities, as well as the
directionality of the involved waves. That is to say, |�1,3,2| is
not necessarily equal to |�−1,3,2|. Alternatively, if only one
nonlinearity is dominant, then it is easy to verify that the
magnitudes of the coupling coefficients are independent of
inversion of any of the involved waves, or inversion of the
medium itself.

While it may seem difficult and coincidental to find a
MM supporting two second-order susceptibilities with similar
enough magnitudes to make this effect noticeable, the permu-
tation symmetries detailed above can lead to this behavior quite
naturally. For example, let us consider DFG in the symmetric
doubly-split ring resonator MM, or χ (2)(ω1; ω3, − ω2) for
ω3 > ω1,2. In particular, we take ω3a/2πc = 0.087, close to
the resonance frequency, while sweeping the other frequencies
and calculate the associated nonlinearities, as shown in Fig. 4.
Permutation symmetry implies that χ (2)

emm(ω1; ω3, − ω2) →
χ (2)

mme(ω1; ω3, − ω2) in the limit ω1 ≈ ω2 ≈ ω3/2, resulting in
the crossing point in Fig. 4(a). Since these are the dominant
nonlinearities contributing to DFG, we see from Eq. (42)
that �1,3,2∗ ≈ 2γemm and �−1,3,2∗ ≈ 0 in the limit ω1 → ω2 →
ω3/2, leading to unidirectional DFG in the forward direction.

For the same configuration, DFG in the antisymmetric
SRR is dominated by both χ (2)

mmm and χ (2)
eme, owing to a rough

balance of the electric and magnetic coupling strengths at these
frequencies, as shown in Fig. 4(b). However, these nonlinear
susceptibilities are out of phase, in contrast to the previous
example. The result is that forward DFG is suppressed, in
favor of backward DFG. Such unidirectional behavior is fun-
damentally different from that associated with phase matching,
and is in fact most noticeable in subwavelength slabs where
phase-matching effects are negligible. Indeed, interference
between nonlinear magnetoelectric susceptibilities offers an
alternate route towards realizing unidirectional devices such as
the nonlinear optical mirror [31]. The unidirectional behavior
is further illustrated in the field maps shown in Figs. 4(c) and
4(d). Similar to Fig. 3, the field maps show a cross section of the
DFG emanating from an infinite column of SRRs. The SRRs
are excited by plane waves at the resonance frequency and half
the resonance frequency, so that the DFG processes depicted
in Figs. 4(c) and 4(d) correspond to the midpoints of Figs. 4(a)
and 4(b), respectively, where the nonlinear interference is
maximized.
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FIG. 4. (Color online) The second-order susceptibilities of the (a) symmetric and (b) antisymmetric SRRs for DFG, calculated via (31)–(38),
for ω3a/2πc = 0.087. (c) and (d) show field maps of DFG from infinite columns of symmetric and antisymmetric SRRs, respectively, in the
nearly degenerate case. The comparable magnitudes in the two dominant nonlinear susceptibilities lead to unidirectional DFG, favoring forward
generation in the symmetric SRR, and backward generation in the antisymmetric SRR.

B. Electro-optic effects

The tuning of optical properties is a highly desirable feature
for many applications, and no less so in magnetoelectric
media [41]. Since the metamaterials considered here have
constituents that are susceptible to the electro-optic effect, it is
natural to consider what effect a static electric field can have
on all of the metamaterial’s effective properties, as described
by the effective second-order susceptibilities. Thus, let us
consider the propagation of a monochromatic wave, labeled
s, under the application of a static electric field, labeled 0.
Under these conditions, we can show that the corresponding
second-order susceptibilities are given by

χ (2)
eee(ωs ; 0,ωs) = 1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ0(�r)�θs(�r) · �θs(�r)

]
,

(49)

χ (2)
mem(ωs ; 0,ωs) = 1

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ0(�r) �φs(�r) · �φs(�r)

]
,

(50)

χ (2)
eem(ωs ; 0,ωs) = i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r) : �θ0(�r) �φs(�r) · �θs(�r)

]
,

(51)

χ (2)
mee(ωs ; 0,ωs) = − i

a3

∫ ∫ ∫
V0

dV
[

¯̄χ (2)
loc(�r):�θ0(�r)�θs(�r) · �φs(�r)

]
,

(52)

while all other nonlinearities must be identically zero. If we
define the material relations according to

�D(ω) = ¯̄ε �E(ω) + i ¯̄κ �H (ω), (53)

�B(ω) = ¯̄μ �H (ω) − i ¯̄κ∗ �E(ω), (54)

then it follows that the effective material properties are
given by

¯̄ε(ω, �E0) = ε0

[
1 + ¯̄χ (1)

ee (ω) + 1

ε0

¯̄χ (2)
eee(ω; 0,ω) : �E0

]
, (55)

¯̄μ(ω, �E0) = μ0

[
1 + ¯̄χ (1)

mm(ω) + 1

μ0

¯̄χ (2)
mem(ω; 0,ω) : �E0

]
, (56)

¯̄κ(ω, �E0) = 1

c

[
¯̄χ (1)
em(ω) + c

i
¯̄χ (2)
eem(ω; 0,ω) : �E0

]
. (57)

In this context, it appears quite natural that χ (2)
eem and χ (2)

mee are
purely imaginary for transparent media, such that the effective
linear magnetoelectric coupling coefficients are real valued.

In essence, Eqs. (55)–(57) constitute the electro-optic effect
for the linear electric, magnetic, and magnetoelectric proper-
ties, respectively. The corresponding second-order suscepti-
bilities for the two MMs are shown in Fig. 5, approximating
�θ0(�r) by a Bloch mode calculated at very low frequency. Thus,
the symmetric SRR supports field-induced contributions to
the permittivity and permeability. The antisymmetric SRR,
on the other hand, supports field-induced magnetoelectric
coupling. This is made particularly more interesting since
magnetoelectric coupling in this SRR vanishes in the absence
of an electric field. Similar control of optical activity has
been realized in a chiral metamaterial through a third-order
nonlinear process [65]. In this way, the linear magnetoelectric
properties of a medium can be tuned dynamically.
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FIG. 5. (Color online) The effective second-order susceptibilities
of the (b) symmetric and (c) antisymmetric SRRs under a static
electric field, calculated via (49)–(52).

V. SPATIAL DISPERSION IN THE NONLINEAR
SUSCEPTIBILITIES

As stated earlier, the expressions for the second-order
nonlinearities in (31)–(38) are only valid in the limit a → 0.
In other words, they neglect the spatial dispersion effects
in the material properties that accompany a finite unit-cell
extent. In this section, we derive the leading-order effect
of spatial dispersion in the nonlinear susceptibilities. In
doing so, we find that the magnetoelectric nonlinearities
naturally fall into two subsets depending on their tensorial
nature (polar or axial), yielding two independent systems of
equations. Using the simple case of a MM formed from a thin

nonlinear slab periodically embedded in a dielectric matrix,
we demonstrate that spatial dispersion tends to distribute
a fundamental nonlinearity across the other three effective
nonlinear susceptibilities of the same tensor type, analogous
to spatial dispersion in the linear properties of MMs.

To obtain a more general set of expressions for the
nonlinear susceptibilities that encompass spatial dispersion,
homogenization can be achieved by direct comparison of
Eq. (23) and the equivalent expression for a homogeneous
material. Thus, casting the coupled-wave equations for a
homogeneous medium, described by Eqs. (3) and (4), into
the same integral form as Eq. (23) yields

∇Aμ( �R) · ŝμ

= iAρ( �R)Aψ ( �R)�̃μ,ρ,ψ

1

a3

∫ ∫ ∫
V0

ei(�kρ+�kψ−�kμ)· �RdV . (58)

Applying the same restrictions to wave propagation and
polarization as described in Sec. II C, we can equate the
like terms in (58) and (23), implying that homogenization
is achieved for

1

a3

∫ ∫ ∫
V0

[
¯̄χ (2)
loc(�r) : �eρ(�r)�eψ (�r) · �e∗

ν (�r)ei(kρ+kψ−kν )z
]
dV

= [
¯̄χ (2)
eeeẽρ ẽψ ẽ∗

ν + ¯̄χ (2)
emeh̃ρ ẽψ ẽ∗

ν + ¯̄χ (2)
eemẽρh̃ψ ẽ∗

ν

+ ¯̄χ (2)
emmh̃ρh̃ψ ẽ∗

ν + ¯̄χ (2)
meeẽρ ẽψ h̃∗

ν + ¯̄χ (2)
mmeh̃ρ ẽψ h̃∗

ν

+ ¯̄χ (2)
memẽρh̃ψ h̃∗

ν + ¯̄χ (2)
mmmh̃ρh̃ψ h̃∗

ν

] ∫ a/2

−a/2

1

a
ei(kρ+kψ−kν )zdz.

(59)

This again represents eight equations containing eight effective
second-order susceptibilities.

By comparing Eq. (59) with (29), we see that the
approximation inherent in Sec. II C is equivalent to∫ a/2
−a/2

1
a
ei(kρ+kψ−kν )z′

dz′ ≈ 1, i.e., the phase mismatch accumu-
lated over a single unit cell is small. This is not always valid,
as many MM unit cells have lattice constants that are not
entirely negligible in comparison to the wavelength. As such,
the previous steps cannot be repeated to yield a closed-form
expression for each nonlinear susceptibility. For example, if
we attempt to derive an expression analogous to (31), we find

1

a2

∫ ∫ ∫
V0

[
¯̄χ (2)
loc(�r) : �θ1(�r)�θ2(�r) · �θ3(�r)

]
dV

= χ (2)
eee

∫ a/2

−a/2
cos(k1z) cos(k2z) cos(k3z)dz + iχ (2)

eme

h̃1

ẽ1

∫ a/2

−a/2
sin(k1z) cos(k2z) cos(k3z)dz

+ iχ (2)
eem

h̃2

ẽ2

∫ a/2

−a/2
cos(k1z) sin(k2z) cos(k3z)dz − χ (2)

emm

h̃1h̃2

ẽ1ẽ2

∫ a/2

−a/2
sin(k1z) sin(k2z) cos(k3z)dz

− iχ (2)
mee

h̃3

ẽ3

∫ a/2

−a/2
cos(k1z) cos(k2z) sin(k3z)dz + χ (2)

mme

h̃1h̃3

ẽ1ẽ3

∫ a/2

−a/2
sin(k1z) cos(k2z) sin(k3z)dz

+χ (2)
mem

h̃2h̃3

ẽ2ẽ3

∫ a/2

−a/2
cos(k1z) sin(k2z) sin(k3z)dz + iχ (2)

mmm

h̃1h̃2h̃3

ẽ1ẽ2ẽ3

∫ a/2

−a/2
sin(k1z) sin(k2z) sin(k3z)dz. (60)

Rather than a single effective nonlinear susceptibility, the right-hand side appears to contain contributions from all eight. However,
since the limits of the integrals on the right-hand side of Eq. (60) are symmetric, all of the terms containing odd integrands, or
equivalently an odd number of sine terms, must vanish, leaving just four nonzero terms. This procedure can be repeated to find
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FIG. 6. (Color online) (a) Illustration of the unit cell for investigating spatial dispersion in the nonlinear properties, consisting of a thin
nonlinear slab of thickness d embedded in a dielectric matrix with periodicity a. (b) The effective nonlinear susceptibilities, assuming εr = 2,
d/a = 0.01, χ

(2)
loc/ε0 = 100 pm/V, ω2 = 1.5ω1, and ω3 = ω1 + ω2, as a function of ω3a/2πc.

all eight analogous equations (see Appendix B). In doing so,
the nonlinear susceptibilities naturally fall into two subsets,
such that all of the terms from one subset or the other vanish
in any given matrix element, leading to two independent
systems of equations. The reason for this separation can be
understood by considering the effective nonlinear tensor types.
Specifically, for the construction considered here, the effective
nonlinearities ¯̄χ (2)

eee, ¯̄χ (2)
mme, ¯̄χ (2)

mem, and ¯̄χ (2)
emm are polar tensors,

while ¯̄χ (2)
mmm, ¯̄χ (2)

eem, ¯̄χ (2)
eme, and ¯̄χ (2)

mee are axial tensors. This
follows naturally from the polar and axial vector nature of the
electric and magnetic fields themselves, and the assumption
that the local nonlinearity is a polar tensor [66]. Since
spatial dispersion in this context should not depend on the
handedness of the coordinate system, it follows that the
affected susceptibilities must be of the same tensor type.

To see how a non-negligible unit-cell extent changes
the effective nonlinear properties of a MM, let us use the
example of a one-dimensional MM consisting of a thin
nonlinear dielectric slab of extent d, periodically loaded in
a dielectric spacer with period a, as shown in Fig. 6. For
propagation normal to the slab, the field and polarization
vectors become scalar. Moreover, to remove the effects of
linear spatial dispersion, let us assume the slab and dielectric
spacer have the same relative permittivity, εr . Thus, the
Bloch modes are simple plane waves with kn = √

εrωn/c.
In the long-wavelength limit, Eqs. (31)–(38) reveal that all
of the effective nonlinear susceptibilities vanish except for
the electric nonlinearity, which reduces to a simple volume
average of the local nonlinearity,

χ (2)
eee(ω3; ω1,ω2) = d

a
χ

(2)
loc (long wavelength limit), (61)

in agreement with previous studies of composite nonlinear
media [61]. Since the nonlinear susceptibilities naturally sep-
arate into two subsets, the four axial nonlinear susceptibilities
are identically zero for all wavelengths. This leaves us with
a system of four equations and four unknown polar nonlinear
susceptibilities. If d = a, i.e., the medium is simply a homo-
geneous slab of nonlinear dielectric, then (B1)–(B8) can be
solved to give χ (2)

eee = χ
(2)
loc for all frequencies, as expected. On

the other hand, in the limit d � a, the left-hand sides of (B2)–

(B8) vanish. Solving this system to leading order in kia, we find

χ (2)
eee =

[
1 − 1

8
a2

(
k2

1 + k2
2 + k2

3

)] d

a
χ

(2)
loc, (62)

χ (2)
emm = +Z1Z2

(
1

12
a2k1k2

)
d

a
χ

(2)
loc = +Z2

0

(
π2

3

a2

λ1λ2

)
d

a
χ

(2)
loc,

(63)

χ (2)
mme = −Z1Z3

(
1

12
a2k1k3

)
d

a
χ

(2)
loc = −Z2

0

(
π2

3

a2

λ1λ3

)
d

a
χ

(2)
loc,

(64)

χ (2)
mem = −Z2Z3

(
1

12
a2k2k3

)
d

a
χ

(2)
loc = −Z2

0

(
π2

3

a2

λ2λ3

)
d

a
χ

(2)
loc,

(65)

where λn = 2πc/ωn is the wavelength in free space. Thus,
spatial dispersion manifests itself in the susceptibilities of the
same inversion symmetry, proportional to the square of the
lattice constant-to-wavelength ratio. The second-order suscep-
tibilities are plotted in Fig. 6(b) for typical values. While the
above equations are specific to this example, the qualitative be-
havior and consequences of spatial dispersion in the nonlinear
properties can be considered representative of MMs in general.

VI. CONCLUSION

Through a coupled-mode analysis, we have developed a
method for describing the nonlinear behavior of MMs in terms
of well-known nonlinear susceptibilities. These effective non-
linear susceptibilities are derived directly from the microscopic
fields supported by the MM, giving a physically intuitive
perspective of the nonlinear properties. By investigating these
relations analytically and numerically, we have shown that the
macroscopic nonlinear behavior of MMs can differ from its
constituent materials not only in magnitude but in kind. In a
simple dual-gap SRR medium, we were able to demonstrate
a configuration and frequency combination at which each of
the eight second-order susceptibilities, defined in Eqs. (3) and
(4), was the dominant nonlinearity. However, it is likely that
more interesting and beneficial structures can maximize the
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usefulness of nonlinear magnetoelectric coupling, particularly
chiral MMs, owing to the prominent role magnetoelectric
coupling plays in such mediums.

To provide a context for this work, we note that certain
magnetic materials are known to support wave-mixing pro-
cesses, such as SHG, mediated through naturally occurring
magnetoelectric nonlinearities [39–43]. These materials, how-
ever, are rare, and the strengths of such processes are limited
by the weak optical magnetic responses of natural materials
in general. In this context, the simple expressions in (31)–(38)
show that MMs can potentially support similar processes, but
at far higher efficiencies.

Perhaps most significantly, nonlinearities of different types
can be brought together in a single medium in a controllable
way that is simply impossible in naturally occurring materials.
This implies a virtually boundless design space for the
nonlinear properties of MMs. In particular, by combining
nonlinear susceptibilities of roughly equal magnitudes in a
single medium, one can access the phenomena of nonlinear in-
terference, whereby the unidirectional generation of harmonics
and mix frequencies can be achieved. Through clever design
of the MM unit cell, nonlinear processes can be suppressed to
avoid parasitic losses, or enhanced by orders of magnitude to
form the core of compact, efficient nonlinear devices.

While we believe this work represents a fundamental step
in understanding the nonlinear magnetoelectric properties
of MMs, it is by no means intended to be an exhaustive
description of the phenomena resulting from nonlinear mag-
netoelectric coupling. Indeed, inspired by the wide range of
potential applications that have been found for various com-
binations of the linear electric, magnetic, and magnetoelectric
properties of MMs, we hope that this work will spark similar
creativity and ingenuity for combining the electric, magnetic,
and magnetoelectric nonlinear properties of MMs in new and
unforeseen ways, while laying the foundations for the design,
characterization, and physics thereof.
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APPENDIX A: COUPLED-MODE THEORY FROM
MAXWELL’S EQUATIONS

In source-free media, Maxwell’s macroscopic curl equa-
tions for the fields at frequency ω in the presence of a

second-order polarization and magnetization are

∇ × �E = iω[ �B + μ0 �M (2)], (A1)

∇ × �H = −iω[ �D + �P (2)], (A2)

with the constitutive relations

�D = ¯̄ε �E + i ¯̄κ �H, (A3)

�B = ¯̄μ �H − i ¯̄κ∗ �E. (A4)

Meanwhile, we know that, in the absence of the perturbation,
the fields satisfy

∇ × �Eμ = iω �Bμ, (A5)

∇ × �Hμ = −iω �Dμ, (A6)

where we take �Eμ and �Hμ to represent the fields of some
unperturbed mode μ with unitary amplitude. Assuming purely
real material properties, we follow the path outlined in
Ref. [59], combining Eqs. (A1)–(A6) to give

�H∗
μ · [∇ × �E] − �E · [∇ × �Hμ]∗

= iω �H∗
μ · [ �B + μ0 �M (2)] − iω �E · �D∗

μ (A7)

and

�H · [∇ × �Eμ]∗ − �E∗
μ · [∇ × �H ]

= −iω �H · �B∗
μ + iω �E∗

μ · [ �D + �P (2)]. (A8)

Adding Eqs. (A7) and (A8), we can apply some vector calculus
identities to obtain

∇ · [ �E × �H∗
μ + �E∗

μ × �H ] = iω[ �P (2) · �E∗
μ + μ0 �M (2) · �H∗

μ].

(A9)

From here, the coupled-mode equations can be found by
choosing an explicit form for the fields �E and �H and the
perturbations �P (2) and �M (2). In particular, by writing all field
quantities in terms of an appropriate choice of basis modes for
the unperturbed system, Eq. (A9) can be used to describe the
evolution of a finite set of these modes in the presence of a
sufficiently weak perturbation.

APPENDIX B: DERIVATION OF THE NONLINEAR
SUSCEPTIBILITIES IN THE PRESENCE OF

SPATIAL DISPERSION

Using the short-hand notation Sn = sin(knz) and Cn =
cos(knz) and dropping the explicit integral limits, we can
rearrange (29) into the following eight equations:

1

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �θ1(�r)�θ2(�r) · �θ3(�r)

]
dV

= χ (2)
eee

∫
C1C2C3dz − χ (2)

emm

h̃1h̃2

ẽ1ẽ2

∫
S1S2C3dz + χ (2)

mem

h̃2h̃3

ẽ2ẽ3

∫
C1S2S3dz + χ (2)

mme

h̃1h̃3

ẽ1ẽ3

∫
S1C2S3dz, (B1)

−1

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �φ1(�r) �φ2(�r) · �θ3(�r)

]
dV

= −χ (2)
eee

ẽ1ẽ2

h̃1h̃2

∫
S1S2C3dz + χ (2)

emm

∫
C1C2C3dz + χ (2)

mem

ẽ1h̃3

h̃1ẽ3

∫
S1C2S3dz + χ (2)

mme

ẽ2h̃3

h̃2ẽ3

∫
C1S2S3dz, (B2)
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1

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �θ1(�r) �φ2(�r) · �φ3(�r)

]
dV

= χ (2)
eee

ẽ2ẽ3

h̃2h̃3

∫
C1S2S3dz + χ (2)

emm

h̃1ẽ3

ẽ1h̃3

∫
S1C2S3dz + χ (2)

mem

∫
C1C2C3dz − χ (2)

mme

h̃1ẽ2

ẽ1h̃2

∫
S1S2C3dz, (B3)

1

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �φ1(�r)�θ2(�r) · �φ3(�r)

]
dV

= χ (2)
eee

ẽ1ẽ3

h̃1h̃3

∫
S1C2S3dz + χ (2)

emm

h̃2ẽ3

ẽ2h̃3

∫
C1S2S3dz − χ (2)

mem

ẽ1h̃2

h̃1ẽ2

∫
S1S2C3dz + χ (2)

mme

∫
C1C2C3dz, (B4)

i

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �φ1(�r) �φ2(�r) · �φ3(�r)

]
dV

= χ (2)
mmm

∫
C1C2C3dz − χ (2)

mee

ẽ1ẽ2

h̃1h̃2

∫
S1S2C3dz + χ (2)

eme

ẽ2ẽ3

h̃2h̃3

∫
C1S2S3dz + χ (2)

eem

ẽ1ẽ3

h̃1h̃3

∫
S1C2S3dz, (B5)

−i

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �θ1(�r)�θ2(�r) · �φ3(�r)

]
dV

= −χ (2)
mmm

h̃1h̃2

ẽ1ẽ2

∫
S1S2C3dz + χ (2)

mee

∫
C1C2C3dz + χ (2)

eme

h̃1ẽ3

ẽ1h̃3

∫
S1C2S3dz + χ (2)

eem

h̃2ẽ3

ẽ2h̃3

∫
C1S2S3dz, (B6)

i

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �φ1(�r)�θ2(�r) · �θ3(�r)

]
dV

= χ (2)
mmm

h̃2h̃3

ẽ2ẽ3

∫
C1S2S3dz + χ (2)

mee

ẽ1h̃3

h̃1ẽ3

∫
S1C2S3dz + χ (2)

eme

∫
C1C2C3dz − χ (2)

eem

ẽ1h̃2

h̃1ẽ2

∫
S1S2C3dz, (B7)

i

a2

∫ ∫ ∫ [
¯̄χ (2)
loc(�r) : �θ1(�r) �φ2(�r) · �θ3(�r)

]
dV

= χ (2)
mmm

h̃1h̃3

ẽ1ẽ3

∫
S1C2S3dz + χ (2)

mee

ẽ2h̃3

h̃2ẽ3

∫
C1S2S3dz − χ (2)

eme

h̃1ẽ2

ẽ1h̃2

∫
S1S2C3dz + χ (2)

eem

∫
C1C2C3dz. (B8)

Equations (B1)–(B4) represent a system of four equations for the four polar second-order susceptibility tensors, while
Eqs. (B5)–(B8) represent an independent system of four equations for the four axial second-order susceptibility tensors. Both
systems can be solved using linear algebra.
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