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Waveguide photonic limiters based on topologically protected resonant modes
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We propose a concept of chiral photonic limiters utilizing topologically protected localized midgap defect states
in a photonic waveguide. The chiral symmetry alleviates the effects of structural imperfections and guarantees
a high level of resonant transmission for low intensity radiation. At high intensity, the light-induced absorption
can suppress the localized modes, along with the resonant transmission. In this case the entire photonic structure
becomes highly reflective within a broad frequency range, thus increasing dramatically the damage threshold of
the limiter. Here, we demonstrate experimentally the loss-induced reflection principle of operation which is at
the heart of reflective photonic limiters using a waveguide consisting of coupled dielectric microwave resonators.
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The emerging field of topological photonics aims to realize
photonic structures which are resilient to fabrication imperfec-
tions [1–10]. Usually, these structures, support topologically
protected (TP) defect states within photonic band gaps. In
this endeavor the manipulation of various symmetries has
been proven extremely useful. An example case are resonator
arrays with chiral symmetry [11] where a topological defect
state appears to be insensitive to positional imperfections
of the resonators [11,12]. In this Rapid Communication we
connected the chiral symmetric array to leads, thus turning the
TP defect mode to a quasilocalized resonant mode which was
utilized for the realization of a topologically protected class of
waveguide photonic limiters.

Limiters are protecting filters transmitting low-power (or
energy) input signals while blocking the signals of exces-
sively high power (or energy) [13–18]. Usually, a passive
limiter absorbs the high-level radiation, which can cause its
overheating. The input level above which the transmitted
signal intensity does not grow with the input is the limiting
threshold (LT). Another important characteristic is the limiter
damage threshold (LDT), above which the limiter sustains
irreversible damage. The domain between LT and LDT is
the dynamic range (DR) of the limiter—the larger it is,
the better. Unfortunately, material limitations impose severe
restrictions on both thresholds. Importantly, these structures
should be tolerant to deviation of the material and geometrical
parameters from their ideal values.

Along these lines, the defect modes hosted by photonic
band-gap [16,19–21] (or other resonant [22]) structures have
been exploited as an alternative to achieve flexible, high
efficiency photonic limiters. In most occasions, however,
limiting action is achieved by a nonlinear frequency shift of the
transparency window of the photonic structure. Such a shift
is inherently small and, therefore, cannot provide broadband
protection from high-power input. Other schemes, specifically
in the microwave domain, exploit PIN diode (having spike
leakage problems) [23], transmitter-receiver (TR) tubes, or
self-attenuating superconducting transmission lines that re-
quire high-power consumption [24]. To address these issues we
have recently proposed the concept of reflective photonic lim-
iters [25,26]. Such limiters reflect the high radiation, thereby
protecting themselves—not just the receiving device—while

they provide a strong resonant transmission for low incident
radiation.

Here, we propose the use of chiral coupled resonator
waveguides (C-CROWs) with alternating short and long
distances from one another (see Fig. 1), as a fertile platform
to implement structurally robust reflective waveguide limiters
with a wide DR. In the presence of a phase slip defect
[27,28], chiral symmetry provides topological protection to
a midgap defect localized mode [11,12]. For low incident
power (or energy) it can provide high transmittance shielded
from (positional) fabrication imperfections. When (nonlinear)
losses at the defect resonator (triggered from high-power,
or energy, incident radiation) exceed a critical value, the
resonant defect mode and the associated resonant transmission
are dramatically suppressed, turning the C-CROW highly
reflective (not absorptive) for a broad frequency range. As
a result, the LDT increases with a consequent increase of the
DR of the limiter. Using a microwave C-CROW arrangement
we have tested experimentally the operational principle of this
class of TP reflective photonic limiter by investigating the
sensitivity and transport characteristics of the TP resonant
defect mode in the presence of losses and imperfections.

The setup [see Fig. 1(a)] consists of N = 21 high index
cylindrical resonators (radius r = 4 mm, height h = 5 mm,
made of ceramics with refraction index n ≈ 6) with an
eigenfrequency around ν0 = 6.655 GHz and linewidth γ =
1.4 MHz [29]. The resonators are placed at alternating
distances d1 = 12 mm and d2 = 14 mm corresponding to
strong (t1 = 38 MHz) and weak (t2 = 21 MHz) evanescent
couplings, respectively. A topological defect at the 11th
resonator is introduced by repeating the spacing d2 [11,12].
Close to the first resonator, we have placed a kink antenna
that emits a signal exciting the first transverse electric (TE1)
resonant mode of the resonators. The structure is shielded from
above with a metallic plate where a movable loop antenna
(receiving antenna) is mounted and is coupled to the 13th
resonator [29].

We assume that the defect resonator incorporates a non-
linear absorption mechanism, i.e., we assume that its losses
are self-regulated depending on the strength of the incident
radiation. One option to incorporate nonlinear losses is via
an external element (fast diodes) [see Fig. 1(b)]. This option
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FIG. 1. (a) The experimental setup: The resonators are separated
by distances d1 or d2 with d1 < d2. A central defect is introduced by
repeating the spacing d2. Various proposals for the implementation of
nonlinear losses in the defect resonator: (b) A circuit with various
module (sensing antenna, diode, threshold DC voltage). (c) An
epitaxial growth of a material that experiences a thermally induced
insulator-to-metal phase transition. (d) Our measurements involve a
defect resonator, which includes a manually modulated absorbing
patch. (e) Measured transmittance T , reflectance R, and absorption
A for two different patches. The linewidth γ (1.4 and 7.8 MHz) of the
reflected signal mainly characterizes the losses due to the absorbing
patches.

provides on-the-fly reconfigurability of the LT via an externally
tuned DC voltage UDC. An alternative mechanism is associated
with temperature driven insulator-to-metal phase transition
materials, such as VO2 [30–33], which can be deposited on
top of the defect resonator [see Fig. 1(c)].

In our experiment we are not concerned with the physical
origin of the nonlinear losses at the defect resonator. Rather, we
focus on demonstrating their effects on the transport properties
of the photonic structure and how can be utilized for microwave
limiters. Therefore, we have included losses γD by placing an
absorbing patch on top of the resonator [see Fig. 1(d)]. This
process results in a slight shift of the real part of the permittivity
of the defect resonator, which we corrected by using resonators
with a slightly higher eigenfrequency. The linewidth γ has
been used in order to quantify the losses of the resonators.

In Fig. 1(e) we show the transmittance T , reflectance R, and
absorption A = 1 − T − R for two resonators with different
losses. We observe that the transmittance of the standalone
lossy resonator reduces as the losses increase, thus acting as
a limiter. However, this reduction comes to the expense of
increasing absorption, i.e., the standalone lossy resonator acts
as a sacrificial limiter.

The photonic structure is described by a one-dimensional
(1D) tight-binding Hamiltonian [34]

HP =
∑

n

νn|n〉〈n| +
∑

n

tn(|n〉〈n + 1| + |n + 1〉〈n|, (1)

where n = 1,2, . . . ,21 enumerates the resonators, νn = ν =
ν0 − iγ is the resonance frequency of the nth resonator, and
tn (= t1 or t2) is the coupling between nearest resonators. The
band structure consists of two minibands ν0 − t1 − t2 < ν <

ν0 − |t1 − t2| and ν0 + |t1 − t2| < ν < ν0 + t1 + t2 separated
by a finite gap of width 2|t1 − t2|. In the presence of the defect
resonator at n0 = 11, a TP defect mode at νD = ν0 [11,12] is

created. Its shape, in the limit of infinite many resonators, is
[11]

ψD
n ∼

{
1√
ξ
e−|n−n0|/ξ , n odd,

0, n even,
(2)

where ψD
n is the amplitude of the defect mode at the nth

resonator and ξ = 1/ ln(t1/t2) is the so-called localization
length of the mode [11]. Hamiltonian Eq. (1) is invariant under
a chiral symmetry, i.e., {HP ,C} = 0 where {· · · } indicates an
anticommutation and C = Peven − Podd with C2 = 1 (Peven/odd

is the projection operator in the even/odd sites). The staggering
form of ψD is a consequence of the chiral symmetry [11,12].

We are modeling the transmitted (reflected) antenna, cou-
pled to the nT = 1 (nR = 13) resonator, by a 1D semi-infinite
tight-binding lattice with coupling constant tL = (t1 + t2)/2
and on-site energies νL = ν0. The associated scattering matrix
takes the form [35]

Ŝ = −1̂ + 2i sin k

tL
WT 1

Heff − ν
W,

(3)

Heff = HP + eik

tL
WWT ,

where 1̂ is the 2 × 2 identity matrix, Wnm = wT δn,nT
δm,1 +

wRδn,nR
δm,2 is a N × 2 matrix that describes the coupling

between the array and the antennas, ν = νL + 2tL cos k is the
frequency of propagating waves at the antennas, and k is their
associated wave vector.

When the system is coupled to the antennas, ψD becomes
a quasilocalized resonant mode at frequency νD ≈ ν0, with a
large but finite lifetime τ ,

τ−1 ∼
〈
ψD

∣∣∣∣eik

tL
WWT

∣∣∣∣ψD

〉
= |wT |2∣∣ψD

1

∣∣2 + |wR|2∣∣ψD
13

∣∣2
,

(4)
where |ψD

1 |2,|ψD
13|2 are given by Eq. (2).

The measured transmittance T = |S12|2, reflectance R =
|S11|2, and absorption A = 1 − T − R versus frequencies ν of
the C-CROW (with global γ = 1.4 MHz = γD) are shown in
Figs. 2(a)–2(c) (solid lines). Measurements of the widths of the
minibands and of the gap allow us to extract the couplings t1 =
38 MHz, t2 = 21 MHz. The presence of the defect resonator
results in a transmission peak at ν = νD inside the band gap.
A fitting of the height of this peak, for various γD values, gives
wT = 10.915 MHz, wR = 3.6875 MHz (see Fig. 3). The small
peak in the absorption [solid line in Fig. 2(c)] is associated with
the small ohmic component at all resonators. In Fig. 2(a) we
also report (dashed lines) the measured transmittance for a
defect with additional losses, i.e., γD = 7.8 MHz. We find that
even a small increase in γD strongly suppresses the resonant
transmission [see Fig. 2(a)].

In Fig. 2(b) we show R(ν) of the C-CROW for γD =
1.4 MHz (solid line) and γD = 7.8 MHz (dashed line). We find
that the suppression in T (νD) is accompanied by an increase
in R(νD). Moreover, A(νD) is decreasing as γD increases [see
Fig. 2(c)]. In other words, our photonic structure becomes
reflective (not absorptive) as the losses of the defect resonator
increase. This behavior is in distinct contrast to the case of
a single (sacrificial) lossy resonator [see Fig. 1(e)] where
the drop in transmittance is associated with an increase of
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FIG. 2. Measurements of the (a) transmittance T , (b) reflectance
R, and (c) absorption A for the C-CROW of Fig. 1. We considered two
different values of γD = 1.4 and 7.8 MHz. All other resonators have
γ = 1.4 MHz. Simulations for (d) T , (e) R, and (f) A of a C-CROW
with lossless resonators (γ = 0) apart from the defect resonator which
has γD = 1.4 MHz (solid lines) and γD = 7.8 MHz (dashed lines).

absorption. These features are also observed in the simulations
of an ideal C-CROW where all resonators have zero intrinsic
losses γ = 0 [see Figs. 2(d)–2(f)].

An overview of the measured (black circles) T (νD), A(νD)
and the corresponding numerical results (black solid lines) for
the C-CROW of Fig. 1 versus γD are reported at the left column
of Fig. 3. We find that an increase of γD leads to a decrease
of T (νD) and A(νD) of the photonic structure. This behavior
is contrasted with the measurements (diamonds) and numerics
(dashed-dotted lines) of a standalone lossy resonator where
we observe relatively large T values T ∼ 10−1 as opposed to
T ∼ 10−4 for the C-CROW, i.e., ultralow LT. For moderate γD

values the absorption of the standalone resonator reaches large

FIG. 3. The transmittance T (up) and absorption A (down) vs γD .
Left: For the C-CROW with resonator losses γ = 1.4 MHz (black
lines, numerics; circles, experiment) and for the standalone resonator
(blue dashed-dotted lines, numerics; diamonds, experiment). Right:
Numerics for the ideal C-CROW (red dashed lines) with γ = 0 at all
other resonators. Symbols (blue dashed-dotted lines) correspond to
measurements (numerics) of T and A for the standalone resonator.
Shadowed areas indicate deviations in T ,A due to randomness in the
couplings.

values A(γD = 0.004 GHz) ≈ 0.8 corresponding to low LDT.
In contrast, the C-CROW takes absorption values, which are at
least one order of magnitude smaller (high LDT). On the right
column of Fig. 3, we report the simulations for T (νD), A(νD)
for an ideal (γ = 0) C-CROW (dashed lines) versus the losses
γD of the defect resonator. These results are compared to
the theoretical/experimental (dashed-dotted lines/diamonds)
results for the standalone lossy resonator. Both cases show
the same qualitative behavior. However, the C-CROW shows
a two-order lower LT (i.e., a smaller γD value for which the
decay of transmittance occurs) as compared to a standalone
resonator. At the same time the LDT of the C-CROW is at least
two orders of magnitude higher than the one associated with
the standalone resonator. The latter acquires a maximum value
of absorption A ≈ 0.8 at γD ≈ 0.01 as opposed to A ≈ 0.01
acquired by the C-CROW. The maximum absorption for the
photonic structure occurs at much lower values of γD ∼ 10−4,
which in the case of a nonlinear lossy mechanism corresponds
to rather small, and therefore harmless, incident radiation.

The transport features of the TP resonant mode have been
further investigated in the case of positional randomness
corresponding to a box distribution for the coupling constants
t̃1,2 ∈ [t1,2 − 2 MHz,t1,2 + 2 MHz]. The shadowed area in
Fig. 3 indicates the variations in T ,A. For γD ≈ 0 (not shown)
the resonant frequency ν0 ≈ 6.655 GHz remains protected
and the resonant transmission is unaffected for both an ideal
C-CROW γ = 0 and for resonators with losses γ = 1.4 MHz.
Moreover, the experimental data in Fig. 3 incorporate an
intrinsic disorder associated with the variation of the bare
resonance frequencies, within a range of 1 MHz, and the
precision of the resonator positioning, of the order of 0.2 mm
(coupling uncertainty ≈ 500 kHz). Nevertheless, the transport
features remain largely unaffected (see Fig. 3).

The fragility of the resonant defect mode is further analyzed
in Fig. 4. In Fig. 4(a) we report the simulated resonant defect
fields for an ideal C-CROW (i.e., γ = 0) and for various γD

values. For γD = 0, a nice agreement between the numerics
and Eq. (2) is observed, indicating that the coupling to the
antennas does not affect the resonant mode profile. As γD

increases, a gradual deviation from the profile of Eq. (2) occurs
and eventually a suppression of the defect mode is observed.

FIG. 4. (a) Simulations for an ideal C-CROW consisting of
resonators with γ = 0. Solid black circles correspond to Eq. (2) for
the defect mode profile. Solid lines correspond to the simulations
of the resonant defect mode profile for various γD . For symmetry
reasons we assumed that the antennas are coupled to the first and last
resonator. (b) Experimental resonant mode profiles for various γD

values. The measured losses at all resonators are γ = 1.4 MHz.
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At γD = 20 MHz the resonant localized mode is suppressed
enough so that the field intensity in the vicinity of the defect
lossy resonator is two orders smaller than the corresponding
one for γD = 0. Thus the lossy defect resonator is protected
from damages induced by heat or electrical breakdown.
This implies a huge increase in the DR of C-CROW. The
comparison with the experimental data [see Fig. 4(b)], where
γ = 1.4 MHz, indicates that the underlying mechanism which
is responsible for the destruction of the resonant defect mode
remains unaffected.

The destruction of the resonant defect mode can be
understood intuitively as a result of a competition between
two mechanisms that control the dwell time of photons
in the resonant state. The first one is associated with the
boundary losses due to the coupling of the photonic structure
to the antennas. It results in a resonant linewidth �edge ∼ τ−1

[see Eq. (4)]. The other mechanism is associated with bulk
losses and it leads to an additional broadening of the reso-
nance linewidth. From first-order perturbation theory, �bulk ≈
γD|ψ11|2 + γ

∑
n�=11 |ψn|2 = (γD − γ )/ξ + γ . For small val-

ues of γD such that �bulk < �edge, the dwell time is determined

by �edge and it is essentially constant. Thus the absorption of
the photons that populate the resonant state increases, as they
are trapped for a relatively long time in the lossy C-CROW [see
the peak of the black line in Fig. 2(c)]. When �bulk ≈ �edge, the
dwell time itself begins to diminish, and the resonant mode is
spoiled. For even larger values of γD the photons do not dwell at
all in the resonant state and reflection from the whole structure
becomes the dominant mechanism. As a result, the absorption
decreases to zero. The above argumentation applies equally
well for the standalone defect and for the photonic structure.
However, in the latter case the condition for the destruction of
the resonant mode �bulk ≈ �edge is achieved for exponentially
smaller values of γD . It is exactly this effect that our proposal
is harvesting in order to increase the damaging threshold (and
the DR) of the photonic waveguide limiter.
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