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ABSTRACT  

In organic molecules, the optical response originates from the motion of the pi-electrons, which are constrained to move
along the molecule’s conjugated path. As an electron moves through the conjugated path, it interacts with the rest of the
charges such that its motion is very dependent on the shape of the molecule. In this paper we introduce a simple model
for  that  allows us to determine how the shape of the conjugated path affects  the nonlinear  optical  response of the
molecule. Our results apply to typical second-order dipolar structures: we have determined how the symmetry of the
conjugated path affects the optical response, and we have found potential new strategies for making better molecules.
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1. INTRODUCTION 

Materials  with  good  nonlinear  optical  (NLO)  properties  are  needed  for  applications  in  all-optical  information
transmission, storage and retrieval, and manipulation.[1-3]  The  purely electronic response of organic photonic materials
would provide higher modulation frequencies, such as wider bandwidths could be used in modulator devices, that would
surpass  the performance of  the  inorganic  piezoelectric  single  crystals,  such as  LiNiO3 ,  that  are  used  presently in
conjunction  with  laser  diode  sources  to  provide  electro-optic  amplitude  modulation  for  long-haul  optical  data
transmission  systems,  [4]   One  potential  advantage  of  organic  nonlinear  optical  materials  with  respect  to  semi-
conductors is that the response at the macroscopic level can be related to the response at the molecular level by simple
addition rules.  This means that the optimization of the macroscopic nonlinear response is based on the optimization of
the response at the molecular level.  Due to the great versatility of organic chemistry, the number of organic molecules
that could be potentially synthesized for the incorporation into optoelectronic devices has been estimated to be of the
order of Avogadro's number.[5-7] 

Accurate and exact expressions for the (frequency dependent) for the linear and nonlinear molecular polarizabilities can
be obtained  though quantum perturbation theory methods.[8]   However,  the exact  evaluation of  the exact  quantum
expressions for  medium sized structures  is  quite  difficult,  since it  requires  knowledge of  the relevant  properties  of
ground and all the excited states of the structure.  In principle these quantities can be evaluated using quantum chemistry
methods, but the level of accuracy of such calculations is yet not good enough to reproduce the experimental results
quantitatively.[9,10]  

To avoid the complexity involved with sums over an infinite number of states, most experimental and phenomenological
approaches  have  traditionally  replaced  the  exact  expressions  for  the  molecular  linear  and  nonlinear  molecular
polarizabilities within the “two-level model” approximation.  Within the two-level model approximation, the molecular
optical response around a resonant peak is assumed to be dominated by the contribution of only two states (the ground
and the first  excited state).   Such an approximation was  shown to yield  qualitative  results  (in  agreement  with the
experimental characterization) for relatively small compounds with only one charge transfer band in the linear absorption
spectrum,  such  as  nitroanilines,[11]  but  clearly  is  insufficient  to  describe  properly  the  behavior  of  medium sized
molecules with more than one single transfer band peak.  Furthermore, Zyss and collaborators have shown that the two-
level  model  is  unphysical  for  structures  with non-dipolar  symmetries.[12-14]   Nevertheless,  the two-level  model  is
employed  regularly  by the  experimentalist  to  extrapolate  the resonance-enhanced  measured  values  of  the  nonlinear
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response  to  the  off-resonance  regime,  and  similarly,  the  theoreticians  have  widely  used  the  two-level  model  to
qualitatively investigate the effects of different structural properties upon the nonlinear response.

In  order  to  look  for  general  relationships  between  the  fundamental  properties  of  the  molecules  and  its  linear  and
nonlinear optical response, an alternative approach based in the application of the Thomas-Kuhn sum rules has been
proposed.  Such an approach is possible because, the generalized Thomas-Kuhn sum rules impose general relationships
between the quantum properties that determine the optical response of the molecule. This kind of methodology was
pioneered by Prof. Mark G. Kuzyk,  who used the Thomas-Kuhn sum-rules to prove that the molecular  response is
bounded and calculated the quantum limit in terms of fundamental properties such as the number of delocalized electrons
of  the  molecule  and  the  wavelength  of  maximum absorption.  The methodology has  been  successfully  applied  and
extended to guide the search for optimal structures,  and to investigate the underlying physical  principles behind the
nonlinear optical response of molecular systems.[14-28] 

Previous research indicated that to improve the first hyperpolarizability it is best to use different kinds of spacers along
the conjugated path.[24,26,28] In this paper we introduce a simple toy model that can help us to find out if there is an
optimal way of arranging the spacers for the optimization of the first hyperpolarizability in typical organic molecules.

2. THEORY

In Nonlinear Optics, the polarization of the material, P
ur

, defined as the electric dipole moment per unit of volume, is not

directly  proportional  to  the  amplitude  of  the  applied  electric  field,  E
ur

.  Hence,  the  polarization  of  the  medium is
expanded as a series in the electric field:

(1) (2) 2 (3) 3 (4) 4( ) ( ) ( )P E E E Ec c c c= + + +
ur ur ur ur ur

K   (1)

a short hand notation used to express the dependence of the polarization in different powers of the amplitude of the
electric field.  

A more rigourous definition is provided taking into account the tensor nature of the fields, as follows. The ith component
of the polarization P

ur
 is related with the components of the electric field amplitude through:

(1) (2) (3)
i ij j ijk j k ijkl j k lP E E E E E Ec c c= + + +K                                                                                                                 (2)

where Einstein’s summation convention is implied.  

In  general,  it  is  more  convenient  to  express  nonlinear  quantities  in  the  frequency  domain.  If  k
iEw

represents  the

amplitude of the electric field oscillating with frequency kw and 1
iPw

represents the amplitude of the polarization of the

medium oscillating with frequency 1w , the equivalent to Eq. (2) in the frequency domain is given by:

31 2 1 2(1) (2) (3)
1 2 1 2 3( ; ) ( ; , ) ( ; , , )i ij j ijk j k ijkl j k lP E E E E E Es sw w ww w w w

s s s sc w w c w w w c w w w w= - + - + - +K                      (3)

where  
1

( )
1( ; , , )

n

n
i na a sc w w w-K K are  the  tensor  components  of  the  nth-order  electric  susceptibility.   Notice  that

conservation of energy implies that for any order, the electric susceptibilities must zero unless: ( 1 2 nsw w w w= + +K

).   The  nth-order  electric  susceptibility  is  an  optical  property  of  the  material  that  serves  to  evaluate  the  nth-order
(non)linear efficiency of the material. For example, in the case of the generation of second harmonic (where the incident
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beam at  frequency  w produces  nonlinearly an  ouput  at  frequency  2w ),  a  second-order  nonlinear  effect,  the  ith-
component of the nonlinear polarization is related to the amplitude of the fields  through:

2 (2) ( 2 ; , )i ijk j kP E Ew w wc w w w= - . (4)

By inspecting Eq. 4, it is clear that the efficiency of a material for the generation of second-harmonic (from w to 2w )

will directly related to the value of 
(2) ( 2 ; , )ijkc w w w- , since, a bigger susceptibility would imply a stronger polarization

of the medium oscillating at frequency 2w . Therefore, at the macroscopic level, the nonlinear electric susceptibilities
quantify the nonlinear efficiency of the medium.

2.1 The molecular hyperpolarizabilities

Following the same approach as with the macroscopic polarization (Eq. 3), the induced dipole of a molecule  p
ur

, is

expanded in powers of the electric field:

31 2 1 2(1) (2) (3)
1 2 1 2 3( ; ) ( ; , ) ( ; , , )i ij j ijk j k ijkl j k lp E E E E E Es sw w ww w w w

s s s sa w w b w w w g w w w w= - + - + - +K                      (5)

where  
(1) ( ; )ij s sa w w-  is  the  molecular  linear  polarizability,  

(2)
1 2( ; , )ijk sb w w w-  is  the  first  hyperpolarizability,

(3)
1 2 3( ; , , )ijkl sg w w w w-  is the  second  hyperpolarizability,  and so on. The first and second hyperpolarizabilities are

properties of the molecule and depend on its structure, in the same manner as the electric susceptibilities are a property
of the material. For example, in the same manner as a second order nonlinear process is forbidden in systems with a
center  of  symmetry,[10]  a  molecule  must  also  lack  a  center  of  symmetry  in  order  to  have  a  non  zero  first
hyperpolarizability.  The investigation, study and characterization of nonlinear optical behavior at the molecular level is
then related to the investigation and study and characterization of the hyperpolarizabilities.

2.2 Quantum-mechanical expressions for the hyperpolarizabilities

The molecular polarizabilities depend on fundamental properties of the structure, and can be derived in terms of some
fundamental  properties  of  the  unperturbed  states  of  the  molecule  (or  any  other  quantum  system),  using  quantum
perturbation theory.[8] These fundamental properties are:

 The energy difference between the ground state, 0g = , and the nth excited state, n , defined as 0nE .

 The line widths of the excited states, 0nG ,  inversely proportional to the lifetime of the excited states.

 The transition dipole moments, nmx , defined as nmx n x m= )
, where x

)
 is the position operator along the

x-direction (in the molecular coordinates).

The diagonal component of the first hyperpolarizability (along the x-direction) , (2)
1 2( ; , )xxx sb w w w- is then given by:[8]

(2) 3
1 2 1 2

,

( ; , ) ( ) ' ( , )mnxxx gm ng nm
n m

e x x x Dsb w w w w w- = - ×å ,                                                                                          (6)

where the prime sign in the sum indicates that the sum is to be carried over all the excited states, but does not include the
ground state;  (-e) is the charge of the electron, and the bar operator has been defined such as:
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The dispersion factors, 1 2( , )nmD w w , are given by:

1 2 1,2
1 2 1

2 1 2 1 2

1
( , )

( )( )

1 1
                    ,

( )( ) ( )( )

nm
mg m ng n

mg m ng n mg m ng n

D I
E i E i

E i E i E i E i

w w
w w w

w w w w w

ìï= í - G - - - G -ïî
üï+ + ý+ G + - G - + G + + G + + ïþ

h h h

h h h h h

       (8)

where h is the reduced Plank constant, such as wh is the energy of the photons associated with a monochromatic beam

oscillating at frequency w , and the operator  1,2I  is mean to perform an average over all the possible permutations of

( )1 2w w« .  A similar expression can be obtained for the second hyperpolarizability,[8,27]

However,  in this paper we will focus only on the off-resonance limit, where the energy of the incoming photons is
negligible in comparison with the energy differences on the unperturbed molecule. In his case the dispersion factor (Eq.
8) does not depend on the incoming frequencies and reduces to:

Dnm=
3

Emg Eng
                                                                                                                                                            (9)

3. GOAL

As  previously  explained,  the  strength  of  the  second-order  nonlinear  response  is  determined  through  the  first
hyperpolarizability (β). A molecule with a high β value has a better optical performance in the regime of interest for our
study.

Typically, molecules with second-order nonlinear optical response consist of a conjugated path between a donor and an
acceptor.  The conjugated path consists on a series of one or more conjugated spacers.  Figure 1 shows some typical
conjugated spacers.

As an electron moves through the conjugated path, it interacts with the rest of the charges in the molecule, such as its
motion is very dependent on the shape of the molecule. We want to find out if there is an optimal way of arranging the
spacers for the optimization of β in typical organic molecules. 

Every kind of spacer has a unique value of the aromatic stabilization energy (ASE). Thus, the presence of a spacer along
the conjugated path produces a “bump” in the potential function V(x) along the conjugated path. These “bumps” can
help to improve the second order nonlinear response (β).[24,26,28] Our goal is to understand the influence of these

Figure 1: Typical conjugated spacers
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“bumps”  on  the  potential  of  the  molecule  along its  conjugated  path  in  order  to  design  better  optically  responsive
molecules. 

4. METHODS

The potential energy along the conjugated path, V(x)=V(DA)+V(bumps), is made up from 0-2 spacers located between
the donor and the acceptor. The effect of donor and acceptor is modeled as V(DA)= k.x/latL, where k is a constant and
latL is the length of the molecule. 

Each spacer creates a bump in the conjugated path. The bumps are modeled as negative Gaussian functions,  The depth
and width of the bump were determined through two parameters,  ac and σ, respectively. As the values of ac and σ for
each spacer are changed, a new potential trial is generated. Figure 3 shows a sample potential made out of 4 spacers, and
the relationship between ac and σ for the negative Gaussian function.

For each potential trial, we then solved the Schrodinger Equation to compute the corresponding first hyperpolarizability,
β. This was done using finite difference methods via MatLab.

Figure 2: Aromatic Stabilization Energies (ASE) of different conjugated spacers (left), and the resulting potential that 
comes by combining different spacers according to our model (right)

Figure 3: A sample potential made out of 4 spacers. The inset shows how the two 
parameters determine the shape of our negative Gaussian function.
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5. RESULTS

Four different sets of simulations were tried. 

First, we tested 84 different simulations with donor and acceptor only (V(x)=k.x/latL), with k and latL as independent
variables. It was found that as the length of the conjugated path (latL) increases, β increases. However, as k increases, β
increases first, and then goes to zero. The results are summarized in Figure 4.

In the second set of simulations, we introduced a bump along the conjugated path. We tested three positions for the
bump (1/3 latL, 1/2 latL, 2/3 latL). We performed a total of 480 simulations with different values of ac, σ, k, and latL.
Our results show that if the bump is at the center of the molecule, as σ increases, so does β, such as the best molecules
should have no bumps at all. However, if the bump is placed at an asymmetric positions it can help to improve β. More
importantly, it is possible to have significant β values without the need of using Donor and Acceptor units.

In our third set of simulations, we simulated structures with two bumps along the conjugated path (latL=5), for different
values ac, σ and k. It was found that the best values of β were achieved when the two bumps were sharp/deep (σ=0.1).

6. CONCLUSIONS

Our study confirms that  the symmetry of conjugated path has  very strong influence on the second-order  molecular
nonlinear response (β). Interestingly,  the presence of one bump along the conjugated path improves  β, as long as the
bump is not in a center position. This is in agreement with the symmetry constraints upon β. 

Generally, molecules with an even number of bumps will generate higher values of  β since the associated potential is
less centrosymmetric. Although the presence of donor and acceptor caps helps to break the centrosymmetry, it was found
that as the difference of potential between donor and acceptor increases, the electrons get trapped on one side of the
molecule and the β value decreases.

In the case where the conjugated path has two spacers, it was found that the best β was generated when the presence of
the spacers results in sharp/deep bumps along the conjugated path. 

Finally, we extended the calculations to molecules with four spacers along the conjugated path. We have found that the
best strategy for making more efficient molecules by combining 4 spacers with different aromatic stabilization energy
(ase) should follow the following pattern: Donor – low ase spacer – low ase spacer – high ase spacer – high ase spacer –
Acceptor.  We also confirmed that it  is best  to use different  kinds of spacers  along the conjugated path in order  to
improve  the  response.  However,  we  have  found  that  the  order  in  which  the  different  spacers  are  aligned  is  very
important.

Figure 4: β values for two different latL (2.5, 5.0), as a function of k for molecules with 
only donor and acceptor components (no bumps along the conjugated path).
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