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Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and 
Uniaxial Crystals 

J. JERPHAGNON* AND S. K. Kmuzt 
Bell Telephone LabMatories, IncMporated, Murray Hill, New Jersey 07974 

(Received 28 May 1969; in final form 2 September 1969) 

A complete theory of Maker fringes in nonabsorbing isotropic and uniaxial crystals has been derived 
which includes all the corrections necessary for making precise determinations of nonlinear optical co­
efficients. These corrections include finite beamwidth effects and mUltiple reflection corrections. Comparison 
of this theory with extensive experimental data on the Maker fringes in quartz, ADP, and KDP shows 
agreement to within the experimental accuracy of about 5% on the Maker fringe envelopes and to better 
than 1 % on the coherence lengths. We conclude from this study that a careful analysis of Maker fringes 
can yield precise values of the nonlinear optical coefficients and coherence lengths in isotropic and uniaxial 
crystals. This is of great importance in establishing accurate and reliable standards in the field of nonlinear 
optics. . 

1. INTRODUCTION 

It is obviously of great interest to measure with a high 
accuracy (within 5% or less) the nonlinear optical 
(NLO) coefficients of materials to be used as standards. 
So far, two different experimental techniques have 
been widely used to measure NLO coefficients. The 
first method is concerned with the possibility of ob­
taining phase matching between the fundamental and 
the harmonic waves. It has been studied in great 
detaill and has led to the absolute measurement of 
d36

2w in ADp2,3 with a quoted accuracy of about 10%. 
The second method of measuring NLO coefficients 

can be used for all materials, whether phase matchable 

perimental error and thereby demonstrate that the 
maker fringe method provides a powerful tool for 
making accurate relative measurements of NLO coef­
ficients. In this article we present a detailed theory 
of the Maker fringes for both isotropic and uniaxial 
crystals and compare with the experimental results for 
each of three materials, quartz, ADP, and KDP, over 
a wide range of angles of incidence. 

The precise measurement of the relative values for 
dll2w of quartz, dalw of ADP and d36

2w of KDP will be 
published elsewhere. 

II. THEORY 

or not; it is the technique used by Maker et al.4 on Assume a fundamental laser beam, of fixed power 
quartz to demonstrate the interference between the Pw, linearly polarized electric field Ew and wave vector 
bound and free harmonic waves. By varying the in- kw, which is incident on a nonlinear crystal in the form 
cidence angle of a laser beam on a plane parallel sample of a plane parallel slab of thickness L, rotating about an 
of NLO material, the intensity of the second harmonic axis perpendicular to kw. Let () be the incidence angle 
generated and transmitted is found to oscillate in a for the laser beam on the crystal measured between the 
periodic fashion. For highly absorbing materials, the beam direction and the surface normal as shown in 
transmitted second harmonic vanishes. Nevertheless, Fig. 1. 
the NLO coefficients can be deduced from the measure- Inside the crystal, the electric field E'w at angular 
ment of the reflected second-harmonic wave at the frequency at w induces a nonlinear polarization 1P2w' 

boundary of the material.5 •6 which radiates electromagnetic waves of angular fre-
The coherence length between the bound and free quency 2w. This wave is called the "bound" harmonic 

harmonic waves can be deduced from the spacing wave. There is in addition to the "bound" harmonic 
between the minima (or maxima) of the Maker fringes wave, a "free" harmonic wave (of angular frequency 
while the NLO coefficient is correlated with the peak 2w) generated at the input surface. These "bound" 
amplitudes of the oscillations. Several authors7- 11 have and "free" harmonic waves have in general different 
used the Maker fringe technique to measure NLO velocities, giving rise to interference fringes in the 
coefficients relative to a standard NLO coefficient such harmonic power P2w" as the slab is rotated. The 
as d36

2w of KDP. There has, however, been a wide range harmonic power P2w" coming from the crystal is thus 
of variation (several times quoted experimental errors) calculated as a function of () by examining the inter­
in these results. For example, the published values of the ference between the bound and free wave harmonic 
important ratio d36

2w (ADP)/d36
2w (KDP) vary by solutions of Maxwell's equations. 

45%. This has caused one of the authors (S.K.K.) con- The crystal is assumed to be without absorption 
siderable difficulty in assembling a definitive tablel2 of losses at both the fundamental and harmonic fre­
NLO coefficients. quencies. Part of the theory applicable to this situation 

The purpose of this work is to make a detailed has been given by Bloembergen and Pershan." In the 
theoretical analysis of the Maker fringes including a following we recapitulate this theory and extend it to 
thorough investigation of all possible sources of ex- include all the necessary refinements. Let us assume 

1667 
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TABLE 1. The independent, nonvanishing (assuming Kleinman's relations) NLO coefficients for all uniaxial and cubic classes are 
listed along with the Miller indices of the sample faces, the direction of the electric field for both fundamental and harmonic waves, 
the axis of rotation, the indices of refraction involved and the projection factor P(IJ) , required for the separate determination of each 
NLO coefficient. In all cases the nonlinear polarization is parallel to the electric field at 2w and is perpendicular to the plane of incidence. 

NLO Sample 
coeff Class orientation 

dn 3(Ca),32(Ds) (Ohk) 
6 ( CSh) ,6m2 (Dah) 

d'J!}. 3(Ca), 3m (C3.) (IzOk) 

6 (Cah) 

das 4( C4), 4mm( Co.) (hkO) 
3(Ca),3m(C3v) 

6(C6),6mm(C6v) 

d3l 4(C4), 4(S.) , 4mm(C4v) (lzkO) 
3(Ca),3m(Ca.) 
6(C6) , 6mm(Cev) 

d36 4(S.),42m(D2d) (110) 

23(Td),43m(T) 

that the Poynting vector is collinear with the wave 
vector k for both harmonic and fundamental waves. 
This occurs when the crystal is isotropic (cubic system) 
or uniaxial in the particular cases E.,' and E2",' are either 
parallel or perpendicular to the optic axis. Our as­
sumption does not lead to a loss of generality as far as 
the measurement of NLO coefficients in isotropic or 
uniaxial crystals is concerned: Assuming Kleinman's13 
relations, it is possible, for any allowed NLO coefficient 
of these crystals, to choose the crystallographic orienta­
tion of the sample in such a way that the Maker fringe 
experiment involves only this nonlinear coefficient, 
E.,' and E2",' being either parallel or perpendicular to 
the optic axis as indicated in Table 1. We will consider 
in another paper the general case of an anisotropic 
crystal. 

We first calculate P2"," assuming the transverse 
dimension of the sample is infinite and there are no 
effects due to the size of the laser beam. In other words, 
we use the plane wave approximation. 

The calculation can be carried out in three steps 
by examining (A) the boundary conditions at the input 
face of the sample, (B) the generation and propagation 
of the free and bound harmonic waves, (C) the bound­
ary conditions at the output face of the crystal. 

A. Boundary Conditions at the Input Face of the Sample 

1. Fundamental Wave 

Using Snell's law and Fresnel's formulas we get for 
the refraction angle 0,,,' 

sinO.,' = sinO / n", (1) 

(all the refractive indices are with respect to air) an d 

E" E2", Rotation n" 1t2., p(IJ) 

II x II x II x nwo n2w
O 

II y II y 11 y n.,o n2wO 

II z II z II z nwe n2w
e 

.LZ II z II z n",O n.,.,e 

.LZ II z II z nwO 1t2.,e 2 cos (IJ,,'+1l"/4) 
Xcos(IJ",' -11"/4) 

for the wave vector k",' 

1 k.,' I=n.,(w/c). 

The amplitude of the electric field E",' is 

\ E",' \=t",'\ E", I, 
where 

t.,'=2 cosO/(n., cosO",'+cosO) 

(2) 

(3) 

(4) 

if E., IS perpendicular to the plane of incidence, or 

t",' = 2 cosO / (n", cosO+ cosO",') 

if E", is parallel to the plane of incidence. 

AIR CRYSTAL 

Z·o Z·L 

(5) 

AIR 

FIG. 1. Propagation of the fundamental and second-harmonic 
waves. The Y axis is perpendicular to the plane of the figure. 
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2. Bound and Free Harmonic Waves 

Because of the presence of a nonlinear polarization 
in the crystal, there is, as we show in Appendix A, a 
reflected wave in air at 2w and two harmonic waves in 
the crystal with the following wave vectors. 

For the free wave: 

sin02",' = sinO /1Z2"" 

i k,i=1Z2",(2w/c). 

For the bound wave: 

sinO",' = sinO / n"" 

(6) 

(7) 

(8) 

(9) 

B. Generation and Propagation of the Harmonic Waves 

The nonlinear polarization <P2"" has to be introduced 
in Maxwell's equations to determine the electric field 
E2",' at each point of the crystal. As shown by the de­
tailed calculations given in Appendix A, the general 
expression for E2",' is 

Xexp(i~·r). (10) 

The first term represents the free wave and the 
second term the bound wave. fb is a function of p, the 
unit vector along <P2w', ~, and kl given in Eq. (A7). 
The boundary conditions for electric and magnetic 
fields at z=o determine E/ as a function of CP2w ', and 
fl' [See Eqs. (A26) and (A32).J 

C. Boundary Conditions at the Output Face 
of the Crystal 

Both fundamental and harmonic waves are reflected 
at the back surface of the slab. Strictly speaking, it is 
necessary to consider multiple reflections at the output 
face and at the input face of the crystal and also the 
nonlinear interactions between all the wayes generated 
in this manner. If the refractive index of the crystal is 
very high, these interactions may be important. An 
evaluation of these phenomena is described in Appendix 
B, where we show that in the case of crystals with low 
indices of refraction the correction (R is close to 1 and 
quite independent of O. It can therefore be omitted for 
materials of low index. At the output face of the crystal 
there is in air only a free harmonic wave with the wave 
vector 

kz"," = 2k",. 

Applying then the boundary conditions on the electric 
and magnetic fields at the output face of the crystal, we 
calculate the amplitude of the transmitted electric 
field E2w" (see Appendix A). Insofar as the multiple 
reflections are neglected, the derivations are made 

without the customary5 assumption 

E/""47riY2",' (n",2- nzw2)-1 

at the output face of the crystal. 
The intensity 12w" of the transmitted second­

harmonic beam is deduced from 

lz"," = (c/87r) Ez"," XH2w" *= (c/87r) i E2w" 12. 

Hence, the second-harmonic power can be easily 
calculated. We define a transmission factor T2"," as 
follows: 

T2w" = 2nzw COs02",' 

(cosO+nw cosOol') (nw COsOOl'+1Z2ol COs02w') 
X (11) 

(n2Ol COs02Ol' + cosO) 3 

if the nonlinear polarization <P2",' is perpendicular to the 
plane of incidence, and 

T2w" = 21Z2", COs02Ol' 

(n", cosO+cosOol') (n2Ol cosO",'+nOl COs02",') 
X (12) 

(1Z2w COs02Ol' + cosO) 3 

if the nonlinear polarization is in the plane of incidence. 
We take 

'If= (7rL/2) (4/>-.) (n", cosOw'-nz", COs02w'). (13) 

12"," can be written as the sum of two terms: one is 
dependent on 'If and the other is not [see Eqs. (A36) 
and (A39)]. The second term has an amplitude several 
orders-of-magnitude smaller than the maximum of the 
first one; hence we can drop it in the final step. With 
these definitions and results the transmitted second­
harmonic power can be written 

PZw" = (S12T/ A) tf2t",'4T2w"(R(O) p2(O) 

XPw2[1/(n.,2-n2W2) 2] sin2'If, (14) 

where Pw is the fundamental power, c is the light 
velocity in air, A is the beam area, d is the NLO coef­
ficient, t",' and T2w" are the transmission factors, as de­
fined by Eqs. (4), (S), (11), (12), (R(O) is the multiple 
reflection correction (Appendix B), L is the sample 
thickness, >-. is the wavelength of the fundamental beam 
in air, p(O) is a projection factor which depends on 
the form of the nonlinear tensor d and on the direction 
of <P2",' compared with the plane of incidence. The 
general formula for p(O) is given in Appendix A. 

The relation (14) has been obtained assuming the 
electric field of the incident laser beam is of constant 
amplitude over the entire beam area A, which is in turn 
large compared to D. Hence, we were allowed to neglect 
the fact that inside the crystal the bound and free 
hannonic waves are not traveling in exactly the same 
direction. 

If A is not large compared to D, an additional so­
called "beam size" correction has to be considered. 

We show in Appendix C how this correction can be 
calculated in the case of a Gaussian laser beam. The 
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result is 

P2.," = (5127r2/cw2) tPt.,'4T2.,"(Jl.(O) P(8)2 

XP.,2[1/(n.,L n2.,2)2JCB(O) sin2'1r, CIS) 

CB(O) = exp[ - (D/w2) cos20(tanO.,'-tan02.,')2]. (16) 

w is the spot radius of the Gaussian beam.14 

There is a significant difference between Eqs. (14) 
and (15) only in the case of thick and very dispersive 
materials or if a tightly focused laser beam is used. The 
difference is equal to zero for normal incidence; so we 
can see that it is important only for large values of O. 

D. Angular Dependence and Envelope Function 

1. General Formulation 

Let us now consider the variation of the transmitted 
second-harmonic power P2.," as a function of O. As 
given in Eqs. (14) and (15), P2.," is an oscillating 
function of 0 with minima equal to zero. Examination 
of Eqs. (14) and (15) shows that the positions of the 
minima are exactly determined by the zeros of 

sin2'1r = sin2[ (11' L/2) (4/>..) (n", cosO.,' - n2", COS02w')] 

and therefore depend only on the thickness of the 
sample and the dispersion of the refractive index. By 
contrast the positions of the maxima can be slightly 
shifted by additional terms (e.g., transmission factor 
t",'4) . 

The phase difference between the bound and free 
harmonic waves is equal to 2'1r. Because the surfaces of 
constant phase mismatch in the crystal are the planes 
perpendicular to 2, we define, for each value of 0, a 
coherence length 

l.CO) =1I'/C~-kf)·2 

The relative amplitudes of the maxima depend on 

t",'4T 2.,"(Jl.(0) p2 (0) CB (0) 

and the equation for the envelope of the Maker fringes 
IS 

PM(O) = (51211'2/cw2)d2t",'4T2","p2(O)(Jl.(0)CB(0) 

X[P,.,2f(n.,2- n2,})2]. (19) 

For normal incidence we get 

PM(O) = (51211'2/cw)tP[16/(n.,+1)3C~.,+1)3] 
Xp2(0) (Jl.(0) [2~.,/ (n",+~) J[l/ (n",-n2w)2JP.,2. (20) 

Knowing the values of the refractive index at wand 2w, 
it is possible to compute the theoretical shape of the 
Maker fringes as a function of angle for a given thick· 
ness L of a given material using a computer program for 
Eq. (15). 

2. Application to Several Specific Cases 

a. Quartz. Point Group 32-z is the threefold axis, 
x a twofold axis. The induced nonlinear polarization has 
components, 

CP x = dllEx2- dllEi+ 2dl~.E1I' 

CP,,= - 2dl~zEx- 2dllExEy , 

CP.=O. 

According to Kleinman relations13 d14 =O. We dis­
tinguish two cases, 

(1) The input and output faces of the sample are 
(011) and rotation is about the x axis. The laser beam is 
polarized along x. The fundamental wave is ordinary 
and perpendicular to the incidence plane with trans­
mission coefficient, 

= A/4 1 n", cosO",' - ~'" COs02",' 1 

and the oscillating factor becomes 

sin2[1I'L/2l.(0) ]. 

(17) t",'(O) =2 cosO/(n",O cosO",'+cosO). 

At normal incidence the coherence length is 

l.=A/41 n",-~", I. 

The nonlinear polarization is parallel to x and 
perpendicular to the incidence plane. Hence the pro­
jection factor p(O) is unity. The harmonic beam is 
polarized along x. The wave at 2w is ordinary and per­
pendicular to the plane of incidence giving a trans-

(18) mission factor, 

" 2~o COs02",'(cosO+n",o cosO",') (n.,o CoSO.,'+n2w° COs02.,') 
T2w = -~--~~--~~--~~~----~~=----=~ 

(~.,o COs02",'+ cosO) 3 • 

(R is close to unity and can be assumed independent of O. If we define the "normalized" Maker fringes as the ratio 

PN = P2.," / PM(O), 
we can write 

(21) 

where 
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(2) The input and output faces (010) of the sample are parallel to x and z. The sample is rotated about the 
optic axis z. The laser beam is polarized perpendicular 10 z. Tbe fundamental wave is ordinary and parallel to the 
incidence plane. 

t.,' (0) = 2 cOsO/ (nOlO cosO+cosO.,'). 

The relations between the crystal system (x, y, z) and the laboratory system (X, Y, Z) are 

x=X y=Z z=-Y. 

The nonlinear polarization is parallel to the plane of incidence. From Eq. (A42), we deduce Pl = 1, px= cos20.,', 
pz=sin20.,', and from Eq. (A44) P2= cos30",'. The harmonic beam is polarized perpendicular to z and is an ordinary 
wave parallel to the plane of incidence for which the transmission factor T 2"," is [see Eq. (12)] 

" 2~.,o COS(J2.,' (n.,o cosO+cosO",') (~O cosO.,'+n.,o cOsOz",') 
T2w = . 

( COs02.,' +~., 0 cosO) 3 

We get for the normalized Maker fringes 

(~.,o cosO.,'+n} COs02w') cos4(J cosOz",'(*z.,o+I)3(~.,o+1)3 cos2 (30,/) (). 
PN = CB 0 sm~. 

(n",O cosO+COsO.,')3(COs02"'+~"O cosO)3(n}+~O) 

b. ADP, KDP Point Group 4?m. The nonlinear polarization is 

CP,,= 2dl ..EIIE., 

CPII = 2dl ..E.E", 

cp. = 2d3~"EII' 

(22) 

The input and output faces of the sample are (110). The sample is rotated about the optic axis z. The laser beam 
is polarized perpendicular to z, and is an ordinary wave, parallel to the plane of incidence whence 

t.,' (0) = 2 cosO / (n", ° cosO+ cosO",') . 

The nonlinear polarization is parallel to z and perpendicular to the plane of incidence 

Pl = 2 cos[O.,'+ (11'/4)] cos[O.,' - (11'/4)], 

P2= 1. 

The harmonic beam is polarized along z, making it an extraordinary wave with wave vector parallel to the energy 
flow and perpendicular to the plane of incidence, whence 

T ,,_ 2n2",' COs02.,' (cosO+n.,o cosO.,') (n.,o cosO.,' +~",' COs(}2",') 
2", - (n2.," COs(}2",' + cos(}) 3 ' 

(n",O cosO",' +*2.," COS02.,') cos40 cOsOz",' (n.,o+ 1) 3(~","+ 1)3( cos(}+n.,o cosO",') 
PN=~--------------~------~~----~--------------~~ 

(n",O cosO+cosO",') 4 (n2.," COS02",'+ cosO) 3 (n.,O+ n2",e) 

X4 cos2(O.,'+1I'/4) cos2(O.,'-1I'/4) XCB(O) sin~, (23) 
and 

'l1= (lI'L/2) (4/)0.) (n} cosO",' -~",' COs02"")' 

E. Comment on Effects of Spatial and Temporal 
Coherence of the Fundamental Laser Beam 

The foregoing theory has been derived in the plane 
wave approximation for a strictly monochromatic 
fundamental laser beam. The inclusion of a finite 
beamwidth correction was made for a Gaussian beam. 
For comparison of experiment with the foregoing 
theory, one should therefore operate the laser in the 
lowest-order TEMoo mode. In addition the laser cavity 
length should be restricted so that only one longitudinal 
mode falls within the oscillating linewidth. 

Relaxation of the second restriction introduces an 
additional multiplier into the transmitted second­
harmonic power CP2"," given in Eqs. 14 and 15. This 
additional multiplier can be shown by an extension of 
the arguments given by Bloembergen15 for normal 
incidence, to be independent of angle and hence does 
not affect the normalized envelope function PN • The 
angular frequency differences between longitudinal 
modes are several orders-of-magnitude too small to 
give rise to a detectable difference in the refractive 
indices and the position of the Maker fringe minima is 
therefore the same for all the longitudinal modes. 
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f FI CRYSTAL 

~--t-_+PI __ I ~ ~1'2-; i2'2-; 
L...-__ -.J BEAM 1 -+ --1 --

SPLITTER LENS POLARIZER 7-56 KG-3 POLARIZER 

TRIGGER 

BOX CAR 
INTEGRATOR 

PAR CW-I 

CORN I NG SCHOTT 
FILTER FILTER 

SAMPLE HOLDER 
AND 

ANGLE MARKER 

TRIGGER 

BOX CAR 
INTEGRATOR 

PAR CW-I 

HP MODEL-71 DOB DUAL CHANNEL 
STRIP CHART RECORDER 

EXPERIMENTAL CONFIGURATION 

FIG. 2. Experimental configuration. The electrical connections are represented by continuous lines, light propagation by dashed lines. 

The additional multiplier does affect PM(O) and 
has to be taken into account for absolute measure­
ments of NLO coefficients. Because it is the same for all 
the NLO materials, it is without any influence on the 
relative NLO measurements. 

III. EXPERIMENTAL RESULTS 

A. Laser 

The experiments were performed using a Nd:YAG 
laser. The output spectrum was analyzed using a 
monochrometer and was found to be a single line 0.6 
cm-1 in width at 1064 nm. 

The YAG rod (3.7-cm long and 2.S-mm diam) is 
mounted between two mirrors with SO-cm curvature 
radius, spaced 20-cm apart. The laser cavity is thus 
nearly confocal. Continuously pumped, the laser is Q 
switched by rotation of one mirror at a rate of 17S Hz. 
Peak powers are 1 kW with pulse widths of ~200 
nsec. The beam has a small divergence with a measured 
half-angle of l.SXlO-3 rad which is within lS% of the 
theoretical value corresponding to a TEMooq mode. 

B. Experimental Arrangement 

Represented in Fig. 2, the experimental configura­
tion, except for a few modifications, is the same used by 
Kurtz and Perry,t6 Singh and TippingJ1 The most 
important modification is the addition of a second­
harmonic power reference system6 : a quartz reference 
sample in an adjustable but fixed position correspond­
ing to the first maximum of the Maker fringes. 

In order to increase the second-harmonic power, the 
laser beam is focused by the lenses FI and Fa with 

2S-cm and 4-cm focal length, respectively. It is neces­
sary to have stronger focusing on the reference quartz 
sample because the laser power incident on it is much 
lower th2.n that incident on the crystal being studied. 

Two Glan-Thomson polarizers PI and P3 are used to 
polarize the laser beam in such a way that the electric 
field is horizontal. The position of the analyzer P2 and 
of the rotation axis (horizontal or vertical) depends on 
the crystal and on the nonlinear coefficient being 
measured. The rotation speed of the sample is adjust­
able in the range 1°-20° per minute. Low speed is used 
when the sample is thick or when the coherence length 
is short since 'Ir is varying rapidly versus (j in these 
cases. 

Both reference and signal are detected using a box 
car integrator with integrating time constant 1 msec 
and then recorded. 

C. Experimental Procedure 

According to the theoretical results, the Maker 
fringes have to be symmetric versus (J, with minima 
equal to zero. In order to get such features from the 
experimental data some care has to be taken with 
respect to the sample orientation and position versus 
the laser beam. 

1. Nonzero Minima 

In practice, the minima have values different from 
zero, a result which may come from several physical 
phenomena, of which the three most important are 
surface defects, beam divergence, and nonparallelism 
between the input and output faces of the sample. 
To avoid the first, the sample must be flat (to ~A) 
and free of scratches. 
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- THEORETICAL ENVELOPE 

FIG. 3. Maker fringes for quartz (Fig. 
3), ADP (Fig. 4), and KDP (Fig. 5), as 
a function of O. The upper trace is the 
second harmonic produced by the refer­
ence quartz sample. To avoid any con­
fusion between upper and lower trace, the 
zero line of the quartz reference has been 
shifted up. The experimental points indi­
cated by crosses (x) have been corrected, 
taking into account the fluctuations of 
the quartz reference signal. 

< EXPERIMENTAL CORRECTED 
POINTS 

/QUARTZ REFERENCE 

REFERENCE 

ROTATION AXIS tz- E
2(,,) 

~-.-(010) >~ 
l/L 

/-Ew ~ 
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_ 1 __ u~ ____ 1 I 

-30° -15° 0° 30° 

Let us evaluate the influence of the latter two effects. 
a. Beam divergence. Near a minimum the harmonic 

power is, according to Eq. (15) P2.,"=C sin2'l1, where 
C can be considered as a constant for small variations 
of (J. The measured power is in fact 

1
6+Ll8 

!:!.P" = (2!:!'(J)-1 C sin2'l1d(J 
6-!J.6 

averaged over the variation 2!:!'(J for the angle of in­
cidence. If E is the beam divergence (half-angle) of the 
laser at the sample, the amplitude !:!.P" of the minimum 
compared to the amplitude P" of the next maximum is, 
for small values of (J 

!:!.P"/P" = (7r2D/12n41c
2)E2(J2. (24) 

Assuming L=0.2 cm, le=lO p.m, n=1.5, E=3.1O-3, we 
obtain !:!.P"/P" = 2% at (J=30o. 

b. Wedge sample. The thickness L of the sample is 
not the same at the center of the beam and at the 
edges. If a is the angle between the input and output 
faces, w the spot radius of the beam, the value of the 
minimum averaged over L is 

!:!.p"= (2wa)-1 f:w 

C sin2'l1dL. 

That means, by comparison with the amplitude P" of 
the next maximum, 

(25) 

So we see the accuracy on the parallelism of the 
two sample faces must be greater when an unfocused 
laser beam is used. !:!.P" / P" is less than 1 % if the wedge 
angle a is lower than 20 min for Ie = 10 p.m and w = 
200 p.m. 

In case of a nonzero minimum, the value of the next 
maximum can be corrected by adding the measured 
minimum !:!.P" to the measured maximum: 

Pmea." =P"[I-t(M)2(d'l! / d(J)2] = P" - !:!.p". 

2. Symmetry of the Fringes 

It is necessary to position the crystal carefully to get 
symmetric fringes. The rotation axis must first be 
centered on the focused laser beam, perpendicular to it, 

at the beam waist. Otherwise, the fundamental power 
density incident on the crystal is not the same for 
(J>O and for (J<O. 

The plane of incidence must remain the same 
(horizontal or vertical) when the sample is rotated: 
The normal to the faces of the sample is adjusted 
perpendicular to the rotation axis. 

Finally, the precise orientation of the crystallo­
graphic axes of the sample is checked: The rotation 
axis is generally parallel to one of the crystallographic 
axes. If this adjustment is not accurate, the projection 
factor p«(J) is asymmetric. This effect can be important 
for instance in the case of a quartz sample rotating 
about the optic axis. 

All the positioning adjustments are made using a 
632.8-nm He-Ne laser, which is colin ear with the YAG 
laser. The crystallographic axis of the sample is ori­
ented when extinction of the He-Ne laser light occurs 
with P2 crossed to PI (Fig. 2). 

D. Data Analysis 

The data analysis is, for a given sample, divided in 
two parts: The first part involves determination of the 
coherence length or study of the function 

sin2(7rL/2) (4/>-.) (n., cOs(J.,'-n-i., COs(J2.,') =sin2'l1, 

TABLE II. Experimental and computed positions of the fringe 
minima in quartz (010). L is the measured thickness of the 
sample, L' the thickness determined from the least-squares fit 
(see text). 

L=0.4483±0.OOlO cm; L' =4477.5 JLm 

o Exper. o Exper. o Theory 

_9° 3/4 9° 1/2 9° 1/2 
-15° 1/2 15° 1/4 15° 1/4 
-W1/2 19° 1/2 W 1/2 
-23° 23° 22° 3/4 
-26° 25° 3/4 25° 3/4 
-28° 3/4 28° 1/2 28° 1/2 
-31 ° 1/4 31 ° 1/4 31 ° 
-33° 1/2 33° 1/2 33° 1/4 
-35° 3/4 35° 3/4 35° 1/2 
-38° 37° 1/2 37° 3/4 
-39° 1/2 39° 1/2 39° 1/2 
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-----THEORETICAL ENVELOPE WITHOUT 
"BEAM SIZE" CORRECTION 

-.-.-.- W = 200/1 
-.-.-.- W = 100/1 

150 

and the second part involves comparison between the 
theoretical and experimental envelopes. 

1. Coherence Length 

For a definite A, sin2qr is a function of four variables: 
L, n." n2w and fJ. In fact n.,-~., is along with fJ the 
crucial variable for the period of the Maker fringes. 

The comparison of theory and experiment is made by 
checking the self-consistency for the values of L, 
n., and ~., over the total range of variation for fJ. 

The positions of the minima are measured with a 
greater accuracy (~iO) than those of the maxima: 
There is no change in the position of the minimum if it 
does not go to zero while the positions of the maxima 
are affected by the laser fluctuations. 

The experimental behavior of sin2qr is therefore 
defined by the positions of all the minima and by the 
shape of the fringes at small angles fJ. The theoretical 
behavior is computed and then compared with the 
experimental data. 

(a) Assume that the refractive indices n., and n2., 
are well known (within a part in 10-4 or less). At normal 
incidence the value of sin~ is strongly dependent on the 
ratio LIZe and the shape of the fringes near ()= 0 changes 
substantially for a small variation in L such as t:.L= 
lel5 (less than 1 /Lm in some cases). Generally L is not 
known with a sufficient accuracy. So the value of L 
used in the computer program to find the theoretical 
variation of sin~ versus fJ has to be adjusted in such a 

FIG. 4. Maker fringes for ADP. 
See Fig. 3. 

L=.5504 em 

manner that the theory fits the experimental results for 
small values of fJ. 

The value of the coherence length itself is then 
verified by the fit for large values of () (400 and above). 

(b) n., and n2., are not well known (within 1 part in 
10-3 or more) . 

The analysis in this case is a little more difficult. The 
values of L and nw-~w have to be alternately adjusted, 
L by considering the shape of the Maker fringes near 
(}=O, and n.,-~., by using the data for large values 
of fJ. 

The final fit indicates an accurate value of Ie, but 
the knowledge of n., and ~., separately is only slightly 
improved. Let us consider next the experimental data 
for quartz, ADP, and KDP. 

Quartz. The value of the refractive index for the 
ordinary wave at 1064 nm is n}= 1.53413 and at 
532.5 nm is ~}= 1.54702. The same coherence length 
le=A/4(~}-nwO) is involved in the two experiments 
with orientation (011) and (010). We have measured 
the Maker fringes in two (011) samples with different 
thickness L and in one (010) sample. In Fig. 3 we show 
the Maker fringes for the (010) sample of thickness 
L=0.4483±0.001O cm. The theoretical computations 
indicated in Table II by comparison with experi­
mental data have been made using L'=4477.5 /Lm. 

ADP. According to the data of Zernike18 the ordinary 
refractive index at 1064 nm is n.,o= 1.50663 and for the 
extraordinary wave at 532.5 nm ~,,,.= 1.48153. Maker 

TABLE III. Experimental and computed positions of the fringe minima in ADP (110). Land L' defined as in Table II (see text). 

L=0.5504 cm; L'=5507.8 /lm 

6 Exper. 6 Exper. 6 Theory 6 Exper. 6 Exper. 6 Theory 6 Exper. 6 Exper. 6 Theory 

_1° 3/4 1 ° 3/4 1 ° 3/4 -2r 1/4 27° 1/4 27° 1/4 -38° 1/2 38° 1/2 38° 1/2 
_11° 10° 3/4 W3/4 -28° 28° 28° 1/4 -39° 39° 39° 
_13° 1/4 13° 13° 1/4 -29° 1/4 29° 1/4 29° 1/4 _40° 40° 40° 1/4 
-15°1/4 15° 1/4 15° 1/4 _30° 30° 30° _40° 3/4 40° 3/4 40° 3/4 

16° 3/4 W -31° 31 ° 31° -41 ° 1/2 41 0 1/4 41 ° 1/2 
-18° 3/4 18° 1/2 18° 1/2 -32° 32° 32° _42° 42° 1/4 42° 1/4 
-20° 20° 20° _33° 3/4 33° 3/4 33° 3/4 _42° 3/4 42° 3/4 42° 3/4 
_21° 1/2 21 ° 1/4 21 ° 1/4 -34° 1/2 34° 1/2 34° 1/2 _43° 1/2 43° 1/2 43° 1/2 
-22° 3/4 22° 1/2 22° 1/2 -35° 1/2 35° 1/4 35°1/4 _44° 44° 1/4 44° 1/4 
-24° 23° 3/4 23° 3/4 _36° 1/4 36° 36° _44° 3/4 44° 3/4 45° 
-25° 1/4 25° 25° 1/4 -37° 37° 37° 
-26° 1/4 26° 26° 1/4 _37° 3/4 37° 3/4 37° 3/4 
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---- THEORETICAL ENVELOPE 
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FiG. 5, Maker fringes for KDP. See Fig. 3 

fringes for two (110) samples of thickness L=0.1666 
cm and L=0.5504 cm were measured. The results for 
the thicker sample are shown in Fig. 4 along with the 
analysis in Table III. 

KDP. We measured two (110) samples and we 
represent in Fig. 5 one of the results (L=0.201± 
0.001 cm). The theoretical computations of Table IV 
correspond to L' = 2011.6 ,urn and the following values 
for the index of refractionll 

'i'l?we= 1.47045. 

For the three materials, agreement between experi­
mental minima and theoretical values is within the 
accuracy, LlO:::;]O, of the experimental data. 

To evaluate the corresponding accuracy on the ex­
perimental value of the coherence length le, we com­
puted the Maker fringes for a given thickness with a 
variation of 1 % in the difference n",-n2w. 

It turns out that a change of 1% for le produces 
a shift for all the minima positions of 1/2° in the range 
35°S;0S;500. Under these conditions the accuracy of 
the measured coherence length is greater than 1 % and 
the experimental values are 

Quartz le = 20.65 ,um±0.05 ,urn, 
ADP le= 10.59 ,um±O.02 ,urn, 
KDP le= 11.43 ,um±O.02 ,urn. 

2. Envelope 

The amplitudes of the maxima can be affected by 
variations in the laser power. It is therefore necessary 

to correct the peaks, with respect to the quartz refer­
ence, for such power fluctuations. In {he case of non­
zero minimum another correction must be made on 
the next peak: The real peak value, measured from the 
o level, is equal to the recorded value increased by the 
value of the minimum, according to the results of 
Sec. I1LC. 

The corrected experimental data are to be compared 
with the computed theoretical values, using the 
normalized envelope given, for each case, by one of 
the Eqs. (21)-(23). The amplitudes and the positions 
of the maxima are the input data of a least-squares 
curve fitting computer program which determines 
PM(O) and the rms error LlPM(O). The theoretical 
computed envelope is then plotted and compared with 
the experimental data, as shown in Figs. 3-5. 

The theoretical envelope fits the experimental data 
very well, except on Fig. 4, i.e., in the case of a thick 
ADP sample. A better fit can be obtained for these 
fringes if the "beam size correction" is taken into 
account. The corrected envelopes were plotted for the 
two values of w: 100 and 200 /.1m. We can see that the 
equivalent Gaussian spot radius of the laser is about 
150 /.1m in agreement with the value deduced from 
direct measurements (variation of the photographed 
beam size when the laser is attenuated by calibrated 
filters). The beam size correction is negligible in all 
other samples because the thickness is smaller and, in 
addition for the quartz, the dispersion nw -1'l?w is low. 

Because the signal to noise ratio is decreasing at 
large values of 0 we computed PM (0) and the rms error 
APM(O) for three sets of data corresponding to the 

TABLE IV. Experimental and computed positions of the fringe minima in KDP (110). Land L' as defined in Table II (see text). 

L=0.201 cm; L'=2011.6/Lm 

(J Exper. (J Exper. (J Theory (J Exper. (J Exper. (J Theory 

-12° 3/4 12° 3/4 12° 3/4 -36° 1/2 36° 1/4 36° 1/2 
-18° 1/4 18° 18° -38° 3/4 38° 1/2 38° 3/4 
-22° 1/4 22° 22° _40° 3/4 40° 3/4 40° 1/2 
-25° 1/2 25° 1/2 25° 1/2 -42° 3/4 42° 1/2 42° 1/2 
-28° 1/2 28° 1/2 28° 1/2 _44° 3/4 44° 1/2 44° 3/4 
-31 ° 1/2 31 ° 1/4 31 ° 1/2 -46° 3/4 46° 1/2 46° 1/2 
-340 33° 3/4 33° 3;4 _48° 1/2 48° 1/2 48° 1/2 
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same crystal: 

(1) maxima in the range \ (J \:::;30°, 
(2) maxima in the range \ (J \:::; 45°, 
(3) all the maxima. 

For example, in the case of quartz (Fig. 3) the results 
are 

(J :::;30° PAlCO) =3.79 ~PAl(O) =0.13 
(J :::;45° PAlCO) =3.S0 ~PAl(O) =0.12 
(J :::;62° PAl (0) =3.77 ~PAl(O) =0.12. 

This demonstrates that the theory fits the experimental 
envelope and that it is possible to deduce an accurate 
value of PAlCO) by considering only the maxima in the 
range \ (J \:::;30°. 

For all the crystals studied the rms error ~PAl(O) was 
less than 5% of PAl (0) . 

IV. CONCLUSION 

A complete theory of Maker fringes in nonabsorbing 
isotropic and uniaxial crystals has been derived which 
includes all the corrections necessary for making precise 
determinations of nonlinear optical coefficients. These 
corrections include finite beamwidth effects and 
multiple reflections corrections. Comparison of this 
theory with extensive experimental data on the Maker 
fringes in quartz, ADP, and KDP shows agreement to 
within the experimental accuracy of about 5% on the 
Maker fringe envelopes and to better than 1 % on the 
coherence lengths. We conclude from this study that a 
careful analysis of Maker fringes can yield precise values 
of the nonlinear optical coefficients and coherence 
lengths in isotropic and uniaxial crystals. This is of 
great importance in establishing accurate and reliable 
standards in the field of nonlinear optics. 
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APPENDIX A: SOLUTION OF MAXWELL'S 
EQUATIONS INCLUDING BOUNDARY 

CONDITIONS 

In a nonlinear material, the constitutive relation 
between the electric induction D and the electric field E 
must include the existence of a nonlinear polarization! 

<P2w'(r, t) =p(92w'(r, t) 

=t[<P2w' exp(ik.r) exp( -iwt) +c.c.J, (Al) 

where p is a unit vector in the direction of the nonlinear 
polarization and the amplitude (92w' is independent of 
time. This amplitude is in turn related to the electric 
field amplitude Ew' through the NLO tensor d by the 

basic relation 
<P2w'=d: Ew'®Ew', 

where Ew'®Ew' is the direct product of the vector Ew' 
by itself. 

This nonlinear polarization acts as a source term in 
the wave equation5 

V X V XE2w ' (r, t) + (n2w2/ (2) [a2E2w' (r, t) / at2J 
= - (47T / (2) [a2<p2c,,' (r, t) /at2]. (A2) 

The solution of the wave equation (A2) for the electric 
field can be written as follows5 : 

E2w' = Cj R/ exp(ikj'r) + [47T(92w'/ (n}-n2}) J 

X[p-~(~·p)/\ Il j \2J exp(i~·r). (A3) 

The first term of (A3) is the "free wave" solution of 
(A2) when (92w' = 0, and the second term is the "bound 
wave," a particular solution of (A2). Cj is a unit vector, 
k j and kb are the wave vectors for the free and bound 
waves, respectively. The magnetic field is 

H2w'= (c/2w) (kjXcj)E/ exp(ikj'r) 

+[47T(92w'/(n}-n2})} (c/2w) (kbXp) exp(i~·r). 

(A4) 
A. Boundary Conditions at Z = 0 

Because of the presence of a source term in Eq. 
(A2) there is a reflected-harmonic wave in air at the 
input face of the crystal 

E2wR=eRER exp(ik2
R·r), (AS) 

H2wR= (c/2w) (k2RXClI)ER exp(ik2
R·r). (A6) 

kj, ~, k2R, ej, CR, E/, and Ell have to be determined 
from the boundary conditions at the input face of the 
crystal, i.e., continuity for the tangential components 
of the electric and magnetic fields. 

The fact that these tangential components should be 
continuous everywhere on the boundary at all times 
leads first to the determination of kJ, ~ and k2R. For 
k j and ~ the result is as indicated by the Eqs. (6)­
(9). For k2R 

(JR= -(J, 

\ k2R \ = 2w/ c. 

Let us now calculate ej, eR, E/, and ER. In order to 
simplify the mathematical manipulations, let us take 

Cb=P-[~(~'p)/\ Ilj \2J 

Q' = 47T(92w' / (nw2-n2w2). 

At r=O, Eqs. (A3)-(A6) are 

E2w' =CjE/+CbQ', 

(A7) 

(AS) 

(A9) 

H2W'= (c/2w) (k j Xcj)E/+Q'(c/2w) (kbXp), (AlO) 

E2wR = eRER, (All) 

H2wR= (c/2w) (kRXCR)ER. (Al2) 
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According to the coordinate system (X, Y, Z) in­
dicated on Fig. 1, the continuity relations are 

X'eRER=X'efE/+X'ebQ', (A13) 

(kRXeR) ·XER=X. (kfXef)E/+X. (~Xp)Q', (A14) 

Y·eRER= Y'efE/+ Y'ebQ', (A1S) 

(kRXeR)' YER= Y· (kfXef)E/+Y· (~Xp)Q'. (A16) 

Let us consider the projections on X, Y, Z of eb, ef, 
eR, and p 

eb ef eR P 

X bx Ix Rx px 
Y by jy R y py 
Z bz jz Rz pz. 

Equations (A13)-(A16) become 

RXER=jxE/+bxQ', (A17) 

RykRZER=jykfZE/+bykbZQ', (A18) 

RyER= jykjzE/+pykbzQ', (A19) 

(RxkRZ-RzkRX)ER= (jXkfZ-jzkfX)E/ 

+ (PXkbZ-PzkbX)Q'. (A20) 

1. The nonlinear polarization is perpendicular to the 
plane oj incidence: 

px= pz=O, py= 1, 

kb·P=O. 

Then eb=p and by= 1. The continuity relations are 

RXER=jxE/, (A21) 

(RxkRZ-RzkRX)ER= (jXkfz-jzkfX)E/, (A22) 

RyER=jyE/+Q', (A23) 

(A24) 

(A21) and (A22) are independent of Q' and exactly the 
same as in the case in which there is no second-order 
polarization, i.e., no field at 2w. We deduce Rx=jx= 
O=Rz=jz. (A23) and (A24) lead to 

ER=E/+Q', 

or 

cosO+n", cosO",' 
E/=-Q' , . 

tz..2", cosOz", + cosO 
(A2S) 

We can now rewrite (A3) as follows: 

, A, ,( cosO+n", cosO",' 
E.,,,, = } Q - ------

- nz", COs02",' + cosO 

Xexp(ikrr) +exp (ik,,· r) ). (A26) 

2. The nonlinear polarization is in the plane oj in­
cidence: 

py=O, 

bx = px- (n.Nnz.,2) sine",'(sine",' Px+cosO",'Pz) , 

by=O, 

bz= Pz- (n",2/nz",2) cosO",' (sine",' px+cosO",'Pz). 

Equations (A13)-(A16) become 

RxER=jxE/+bxQ', 

(jxkfz-jzkfX)E/ +Q' (pXkbZ- pZkbX ) 

(A27) 

= (RxkRZ-RzkRX)ER, (A28) 

RyER=jyE/, 

RykRZER = jykfZE/. 

Equations (A29) and (A30) give the result 

Ry=jy=O 

and we can write the continuity relation as 

-ER cosO=E/ cos02",'+bxQ', 

ER = n2",E/ +n",Q' (Px cosO",'- pz sine",'), 

which leads to 

, , bx+n", cosO(Px cosO",'-pz sine",') 
E f = - Q -=-~-----'-'--=--~-----'~---=--'-

COs02",' +n2w cosO 

= -(3Q'. 

(A29) 

(A30) 

(A31) 

Using in (A3) the value of E/ coming from (A31) we 
get 

B. Boundary Conditions at Z =L 

At the output face of the sample the bound and free 
waves are transmitted in air and produce a free wave 
E2"," with the wave vector k2"''' 

So long as the reflections of E",' at Z = L are neglected, 
there is no reflected bound wave. The reflected free 
wave at 2w is E/R with the wave vector k/R 

I k/R l=n2",'(2w/c). 

1. The nonlinear polarization is perpendicular to the 
plane oj incidence: Eecause of the continuity conditions 
for the tangential components of the wave vectors, the 
continuity_relations for the electric fields and the 
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magnetic fields are 

E/ exp(ikrZL) +Q' exp(ikz,.ZL) +E/R exp( -ikrZL) =E2.," exp (2ik.,· ZL) , (A33) 

-nz.., COfil2",'EI exp(ikrZL) -n., cofil.,'Q' exp(ikz,.ZL)+nz., cofilz.,'E/R exp( -ikrZL) 

= -cofilE2.," exp(2ik..,.ZL). (A34) 
Eliminating E/R between (A33) and (A34) , we calculate E2.," 

2~, ~ll' 0'+ 0 ' 
E " (2'k ZAL ) - ''''2., CO""2., E ' ('k ZAL) + n., ('os w nz.w cos 2w Q' ('lr zAL) 

2., exp Z w· - , I exp 1 r exp ZAb' , 
COfil+n2w COfil2., cofil+nz.w COS02w' 

and the intensity 12.," of the second-harmonic beam coming out of the crystal is 

12.,"= (c/871-) Ez.,"XHz.,"*= (c/87r) 1 Ez.,"12, 
Using (A8) and (A25), 

" c 1671'21 CP2.,' 12 (8 ' (cos6+nw cofilw') (nw cOfil.,'+n2w cofilz.,') . 
12., = - 2 Z 2 n2., cofil2w , 3 sm2\[! 

871' (nw - nz.., ) (nz.w cofil2., + cofil) 

where 
'l'= (7rL/2) (4/;>.) (n., cosO.,'-nz.", cofil2w'). 

(A35) 

(A36) 

The second component of 12.," in Eq, (A36) is independent of L and does not exhibit an oscillatory behavior. Its 
amplitude is several orders-of-magnitude smaIIer than the maximum of the first term, It can generally be neglected. 

2, The nonlinear polarization is in the plane of incidence: The continuity relations are 

cofil2{,J'E/ exp(ikrZL) +bxQ' exp(ikz,.ZL) - cofilz.,'E/R exp( -ikrZL) = cofilE2.," exp(2ik..,.ZL) , (A37) 

nz.,E/ exp (ikj' ZL) +n.,Q'(cofil.,' Px-sinO",' pz) exp(ikz,.ZL) +nz.,E/R exp( -ikrZL) =E2w" exp(2ik..,.ZL). 

(A38) 
From (A37) and (A38) we deduce 

E " (2'k .ZAL ) = 2n2w COS02",' E' ('k .ZAL ) + nz..,bx+n., cofil2w'(cofil.,'px- sinO",'pz) Q' ('lr .zAL ) 
2", exp Z w , I exp Z f , exp ZAb ' 

n2", cofil+ COS02w nz., cos() + COs()2., 

The intensity 12.," is, using (A8) and (A31). 

" c 1671'2 \ CP2.,' \2 {8 ' [bx+n., cofil(Px ('ofil.,' - pz sinO.,') J[nz.",bx+nw cofil2.,' (cosO",' px- sinO",' pz) ] 
12", = -- nz., cofil2", 

871' (n.,2-n2.,2)2 (n2'" cofil+cofilz.,') 3 

X sin2\[!+ [ 2{3n2., COs()2.,' _ (nz..,bx+n", COfil2"'(COfil"'px-sino,,'pz)]2}, (A39) 
n2", cofil+ cofil2",' (n2., cosO+ cofilz.,')2 

As before, we neglect the second component of 12.,", Let us consider the term 

cos().,'(Px cosO",' - pz sinO",') = PX-sinO.,'(px sinO.,'+cofil.,' pz), 

From previous calculations we found 

bx = px- (nw2/nz.,2) sinO",' (Px sinO",' +cofil.,' Pz), 

Combining these two results we see that for materials in which the dispersion is not very important (i.e., nw~nz.,) 
and for \ 0 \ ~7r/4, it is possible to write 

bx"-'cos().,' (Px cofilw' - pz sinO",') , 

If 'I) is the angle (i\ x), 12.," can be written as 

" c 167r2 I CP2.,' 12 , , (n", cofil+cos()",') (nz.", cos()",'+n", cofilzw') , '>-.T, 

12., = 8~ (n",2_M~",2)2 8nz.", cofil2., cos2 (O", -'I)) , sm-~, 
" W" (1/.<2w cos() + COs()2",') 3 

(A40) 

In summary, we deduce from the formulas (Al), (A36), and (A40) the following relation between the second-
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harmonic power density h,," and E",' 

12.," = [87l"c/ (n,.,2-lh",2) 2Jd2p2 (0) I E.,' l4Yz"," sin2[ (7l"L/2) (4/A) (n", COsO",'-1h", COs02",') J, (A41) 

where d is the NLO coefficient involved in the experiment and p(O) is the "projection factor." p(O) is the product of 
two quantities PI and P2, i.e., p(O) =hP2. 

PI comes from (Al) written in terms of amplitudes 

(A42) 

If the nonlinear polarization {Pz.,' is perpendicular to the plane of incidence 

P2= 1, 

T
" 2 ' (cos8+ nw cosO.,') (n., cosO.,' + lh", COs02w') 

2w = n2w COs02., , . 
(nZ., cosOz", + cosO) 3 

(A43) 

For a nonlinear polarization in the plane of incidence 

P2= cos (0.,'-'1] ), (A44) 

T
" 2 ' (n", cosO+cosO.,') (lh", cosO.,'+n", cosOz",') 

20l = lhOl COs02", ,. 
(nZ., cosO + COs02., ) 3 

(A4S) 

APPENDIX B: MULTIPLE REFLECTIONS 
CORRECTION 

We have assumed, so far, that in the crystal the 
fundamental and harmonic waves are traveling from 
Z=O to Z=L (forward direction), without waves in 
the reverse direction. This assumption is a first-order 
approximation because at the boundaries Z = 0 and 
Z = L the waves are reflected. This induces a change in 
the amplitude of the forward waves, and the backward 
waves can no longer be ignored. 

The solution of this problem can be obtained in the 
following way: Taking into account the multiple 
reflections of the fundamental wave, the forward 
EOl' and backward EOl'R can be calculated. The non­
linear polarization is then deduced from 

(P2Ol' =d(E",'+E",'R) (8) (E.,'+EOl'R) (Bl) 

and introduced as a source term in the wave equation 
at 2w. Using the same method as in Appendix A, the 
electric field at 2w is decomposed in a sum of bound 
and free waves where orientations, amplitude, and 
phase are determined by the boundary conditions at 
both faces of the crystal. This leads to very complex 
formulas of the same kind as those given by Bloem­
bergen and Pershan for the nonlinear plane-parallel 
plate.5 These formulas, besides the fact that they 
hardly can be used by the experimentalist, do not 
describe the multiple reflection phenomenon as it 
usually occurs. To make this point clear let us consider 
the plane-parallel slab in the linear case, i.e., without 
any second-harmonic generation. If t and r are the 
transmission and reflection coefficients given by 
Fresnel's formulas, the complex amplitude of the 
electric field transmitted in air at Z = L, after m 
multiple reflections is 

Em = Et2r2m exp(2imk.'L) , 

where E is the complex amplitude of the incoming 
beam and k.' the Z component of the wave vector 
inside the crystal. 

The intensity J of the transmitted beam can be 
written as 

In the ideal case where the two faces of the sample 
are strictly parallel we get 

J = [f4/ (1 +r4- 2r2 cos2k.' L) Jl. (B3) 

1 is the intensity of the incoming beam. The trans­
mission of the slab is an oscillating function of L, i.e., 
the slab acts as an interferometer. More generally the 
crystal faces are not flat and parallel enough to get a 
constant phase difference exp(2ik.'L) between Em and 
Em+I. An upper limit on the variation t:.L for which 
(B3) is valid can be obtained from the condition 

2k.'t:.L-::;'7l"/2 
which leads to 

t:.L < AI 8n"-'0.1~m 
or less. If AL"2A18 we deduce from (B2) 

J=[N/(1-r4)J+N L r2(m+p) coso (B4) 

with random values for o. The transmission factor is 
therefore 

(BS) 

independant of LI because the fields Em and Ep are 
incoherent. Let us come back now to the "nonlinear" 
case. We assume the crystal sample is a plane-parallel 
slab but not an interferometer. 

In these conditions we are allowed to consider, at 
a given frequency and for a given kind of wave (free or 
bound), that the consecutive fields Em are incoherent. 
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Nevertheless, the flatness of the faces is sufficient 
to provide, at the output face Z = L, a constant phase 
difference expi(k,,- k f ) ·ZL between the free and 
bound harmonic waves with the same index m. 

An upper limit of the random variations tJ.L is 

(2w/c) (n2w-nw)tJ.L<7f/2 

or tJ.L<lcl2; a quite obvious result. The factor 

sin~=sin2[(7rL/2) (4/1.) (nw cosOw'-n"2w COs02w')] 

is therefore the same for all the transmitted harmonic 
waves, which are incoherent. Thus the multiple re­
flections correction CR affects only the envelope of the 
Maker fringes. 

To calculate CR we proceed in the following sequence: 

(1) Sum multiple reflections of the second-harmonic 
light generated by the first forward pass of the laser 
beam. 

(2) Sum multiple reflections of the second-harmonic 
light generated by the first backward pass of the laser. 

(3) Sum multiple reflections of the second-harmonic 
light generated by the second forward pass of the 
laser. And so on .. '. 

rw is the reflection coefficient for the fundamental 
wave and r2w for the harmonic waves (because Ow' and 
02w' are nearly equal, we can assume the same value of 
the reflection coefficient for the free and bound waves 
at 2w). 

First Forward Pass 

P2w"(J) = L P2w .m " = P2w ,o" / (1-r2w4). 
m 

First Backward Pass 

I t is necessary to consider two cases. 
a. Ew is perpendicular tf} the plane of incidence: 

There is no change, at Z = L, in the direction of the 
fundamental electric field and the nonlinear polariza­
tion produced by the backward wave has the same 
direction p. 

and the power transmitted at Z = L is 

Taking into account the multiple reflections we get 

P2w"(2) = [r2w2rw4/ (1-r2w4) ]P2w ,o". 

b. Ew lies in the plane of incidence. There is a change 
in the direction of the electric field after reflection and 
the unit vector of the nonlinear polarization is PR 
which corresponds to a projection factor PR (0). This 
projection factor can be calculated as we did for 

p(O). PR(O) is generally close to p(O), In some cases, 
a nonlinear coefficient other than d can be involved. 
In these conditions 

Second Forward Pass 

During the second forward pass, the electric field of 
the fundamental wave is decreased by rw2• 

P2w"(3) = [r}/ (1- rzw4) ]P2w ,o" 

and so on. Summing all the contributions we see that 
the multiple reflections induce a correction factor 
CR(O) 

CR(O) =[1/(1-r2}) (1-r})] 

XI1+[pR2(O)/p2(O)]r2}rw4), (B6) 

where PR2(O) = p2(O) when the electric field at w is 
perpendicular to the plane of incidence. At normal 
incidence r= (n-1) / (n+ 1) and r2w has almost the 
same value as rw 

CR(O) = (1+,-6)/[(1-r4) (l-,s)]. (B7) 

It is obvious that CR(O) is close to unity for low values 
of the refractive index and therefore can be neglected. 
For n= 2, CR(0)-:::-,d.01 while for n= 4, CR(O) = 1.20 and 
the correction is no longer negligible. 

It is worth noting that Eq. (B7) is identical with the 
case of a phase matching experiment, at normal lll­

cidence.19 

APPENDIX C: BEAM SIZE CORRECTION 

The previous calculations have been made assuming 
the electric field of the incident beam is of constant 
amplitude on the entire boundary surface Z = O. 
Hence we neglected the fact that the bound and free 
waves are not traveling in exactly the same direction 
inside the crystal. 

This phenomenon reduces the interaction volume of 
the free and bound waves and, therefore, induces a 
correction, which we calculate for an incoming Gaussian 
beam. 

Let x, y, z be a coordinate system such that 

The electric field of the fundamental beam is7 

Ew(x, y, Z= const) =Ew exp{ - [(X2+y2) /w2JI 
Xexp[ -ikw(X2+y2)/2R]. (Cl) 

Experimentally the crystal is at the beam waist: w may 
be assumed to be independent of z, and R is infinite. 
In these conditions 

(
( ,X_c_osO_-_Z_si_n---,O)_2 _ Y2). 

Ew(X, Y, Z) =Ew exp - -
w 2 w 2 

(C2) 
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As a consequence of the boundary conditions we deduce 

E",' (X, Y, Z) = t",' E", 

(
(X cosO",' - Z sinO",') 2 cos20 Y2) 

Xexp - - - . 
w2 cos20",' w2 

(C3) 

Let us consider now the wave equation for the second­
harmonic inside the crystal 

The transverse spatial variation of (1)2,,,' is 

( 
2 (X cosO",' - Z sinO",') 2 cos20 2 Y2) 

exp - - - . (C5) 
w2 cos20",' w2 

We do not solve Eq. (C4) exactly; we approximate 
the solution by assuming spatial variation factors for 
the amplitudes of the free and bound waves. 

For the bound wave, this factor is given by (C5), 
and for the free wave it may be written as 

( 
2(X cosOz",'-Z sin02",') 2 cos20 2P) 

exp - - - . 
w2 COS202",' w2 

(C6) 

In these conditions the solution of (C4) is 

E 'A (2(XCOs02""-ZsinOz"")2COS20 2P) (·k ) 
2", =e,E,exp - - - exp 1- f"r 

w2 cos202",' w2 

47r(\>2", , (' kb(kh'P») ( 2(X cosO",'-Z sinO",') 2 cos20 2P) (.k ) + p- exp - - - exp t b'r . 
n",2-'n2",2 1 k, 12 w2 cos20",' w2 

Carrying out the calculations in the same manner as in Appendix A, we get for the intensity coming out of the 
crystal 

" 87rc 1 (\>2",' 12 " ( 4P) ( 2(X cos02",'-L sin02",') 2 cos20 2(X cosfJ",'-L sinO",') 2 COS20) . 
[~'" = <Tz", exp - - exp - - sm2q/. 

(n",2-'n2",) " w2 W2COS20",' W2COS20",' 

The power P2"," is the flux of the intensity 12"," 

across the plane Z = const. Therefore, 

P2"," = J J 12"," cosOdXdY. 

'l1 is independent of X and Y. 
Using 

we get 

P2"," = 2~cw2[1 (\>2",' 12/ (n.,2- 'n2",2) 2]T2"''' 

Xexp[ - (D/w2) cos20(tgO",'-tgOz",') 2] sin2'l1. (C9) 

Equation (C9) shows that the correction factor taking 
into account the beam size effect is 

(ClO) 

(B (0) = (B (7r/2) = 1 but (B may differ significantly from 
unity for 0 in the range (7r/4, 7r/2) if L»w. 

* On leave of absence from C.N.E.T., 92 ISSY les Mx, France. 
t Currently at Philips Laboratories, Briarcliff Manor, New 

York. 

1 G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 
(1968). 

2 G. E. Francois, Phys. Rev. 143, 597 (1966). 
3 J. E. Bjorkholm and A. E. Siegman, Phys. Rev. 154, 851 

(1967) . 
4 P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, 

Phys. Rev. Lett. 8, 21 (1962). 
5 N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 

(1962) . 
6 J. Ducuing and N. Bloembergen, Phys. Rev. Lett. 10, 474 

(1963) . 
7 R. C. Miller, D. A. Kleinman, and A. Savage, Phys. Rev. 

Lett. 11, 146 (1963). 
8 J. P. van der Ziel and N. Bloembergen, Phys. Rev. 135, 

Al662 (1964). 
9 V. S. Suvorov, A. S. Sonin, and I. S. Rez, Sov. Phys.-JETP 

26,33 (1968). 
10 A. Savage, J. Appl. Phys. 36, 1496 (1965). 
11 J. Jerphagnon, Ann. Telecommunications 23, 203 (1968). 
12 R. Bechmann and S. K. Kurtz, Numerical Data and Func­

tional Relationships, Group III: Crystal and Solid State Physics, 
K. H. Hellwege and A. M. Hellwege, Eds. (Springer-Verlag, 
Berlin, 1970), Vol. 2, p. 167. 

13 D. A. Kleinman, Phys. Rev. 125, 1977 (1962). 
14 H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965). 
15 N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc., 

New York, 1965) Chap. 5, p. 131. 
16 S. K. Kurtz and T. T. Perry, J. App!. Phys. 39, 3798 (1968). 
17 S. Singh (private communication). 
18 F. Zernike, J. Opt. Soc. Amer. 54, 1215 (1964); 55, 210E 

(1965) . 
19 S. H. Wemple and M. DiDomenico, Jr., J. App!. Phys. 40, 

735 (1969). 


