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Non-Hermitian degeneracies, also known as exceptional points, 
have recently emerged as a new way to engineer the response of open 
physical systems, that is, those that interact with the environment. 
They correspond to points in parameter space at which the 
eigenvalues of the underlying system and the corresponding 
eigenvectors simultaneously coalesce1–3. In optics, the abrupt nature 
of the phase transitions that are encountered around exceptional 
points has been shown to lead to many intriguing phenomena, such 
as loss-induced transparency4, unidirectional invisibility5,6, band 
merging7,8, topological chirality9,10 and laser mode selectivity11,12. 
Recently, it has been shown that the bifurcation properties of 
second-order non-Hermitian degeneracies can provide a means 
of enhancing the sensitivity (frequency shifts) of resonant optical 
structures to external perturbations13. Of particular interest is 
the use of even higher-order exceptional points (greater than 
second order), which in principle could further amplify the effect 
of perturbations, leading to even greater sensitivity. Although a 
growing number of theoretical studies have been devoted to such 
higher-order degeneracies14–16, their experimental demonstration 
in the optical domain has so far remained elusive. Here we report 
the observation of higher-order exceptional points in a coupled 
cavity arrangement—specifically, a ternary, parity–time-symmetric 
photonic laser molecule—with a carefully tailored gain–loss 
distribution. We study the system in the spectral domain and find 
that the frequency response associated with this system follows a 
cube-root dependence on induced perturbations in the refractive 
index. Our work paves the way for utilizing non-Hermitian 
degeneracies in fields including photonics, optomechanics10, 
microwaves9 and atomic physics17,18.

Degenerate states appear ubiquitously in many physical settings as a 
result of an underlying symmetry. Breaking this symmetry through an 
external perturbation can lead to a splitting in the eigenvalue domain—
an effect that has been exploited in a wide range of detection systems. 
In Hermitian environments, such as those encountered in quantum 
mechanics, the induced shift or separation in the eigenspectrum is at 
most of the same order as the perturbation ε itself (with �ε 1). In 
optics, this type of response is typically manifested in the resonance 
frequencies via variations in the complex refractive index and has pro-
vided the basis for various sensing arrangements, including microcavity  
sensors19–21 and ring laser gyroscopes22. In recent years, there has been 
a growing realization that non-conservative systems that operate 
around their degeneracies or exceptional points can provide a new way 
of enhancing their sensitivity beyond what is possible in standard 
arrangements. In such non-Hermitian configurations, the eigen
frequency splitting Δ​ω can be accentuated by orders of magnitude, 
because it follows an ε1/N-dependence, where N represents the order of 
the exceptional point. In general, the order N is determined by the 
number of eigenvalues that simultaneously coalesce at the exceptional 
point. What makes this class of singularity so reactive to small 

perturbations is the fact that, in addition to the eigenvalues, all of the 
corresponding eigenvectors also merge at the relevant point in 
parameter space. In essence, around exceptional points, the system 
behaves as if it suddenly loses its dimensionality, because the vector 
space becomes severely skewed. Given that Δ​ω ~​ ε1/N, it is clear that 
the sensitivity of the system will increase with the order of the excep-
tional point—a feature that is highly desirable in detection applications. 
During the past few years, second-order exceptional points have been 
investigated in various photonic structures, including lasers11,12,23, 
photonic crystals7, synthetic lattices24 and topological arrangements25. 
On the other hand, higher-order non-Hermitian singularities have been 
reported only in coupled acoustic cavities that involve loss26. Such 
higher-order bifurcations and the ensuing boosts in the sensitivity of 
optical resonant arrangements have yet to be observed.
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Figure 1 | Parity–time-symmetric coupled cavity systems that support 
exceptional points. a, Schematics of binary (left) and ternary (right) 
parity–time-symmetric photonic molecules, with loss, gain and neutral 
resonators shown in blue, red and grey, respectively. Coupling between 
the resonators is represented by κ. b, A parity–time-symmetric ternary 
micro-ring system with equidistantly spaced cavities. The side resonators 
experience balanced gain and loss whereas the middle one is neutral. 
The rings (radius, 10 μ​m; width, 500 nm; height, 210 nm) consist of six 
quantum wells and are fabricated on an InP wafer. Three gold micro-
heaters (thickness, approximately 150 nm) are fabricated underneath 
each cavity and are used to fine-tune the resonance wavelengths and to 
introduce thermal perturbations. The heating elements are shown in the 
inset. c, An SEM image of the structure at an intermediate fabrication step.
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Of the many possible types of non-Hermitian photonic system, 
parity–time-symmetric arrangements are of particular interest because 
they provide an excellent platform for exploring the physics of excep-
tional points8,27. For instance, parity–time symmetry can be readily 
established in coupled resonators that simultaneously include gain 
and loss in a balanced fashion6,11, while allowing direct control over 
the energy exchange process through coupling. Figure 1a depicts two 
such parity–time-symmetric photonic molecules. The first involves two 
identical cavities, one experiencing gain and the other an equal amount 
of loss. The second consists of three resonators: the two from the first 
system separated by a neutral cavity. It can be shown that the former 
supports a second-order exceptional point, and the latter a third-order 
one. As a result, in the first case (N =​ 2), the eigenvalues are expected 
to diverge according to ε1/2, whereas for N =​ 3 the splitting would be 
more abrupt because it follows ε1/3. In principle, higher-order excep-
tional points can be synthesized in this manner by following a recursive 
bosonic quantization procedure28.

To demonstrate the enhanced sensitivity in a parity–time-symmetric 
ternary micro-ring laser system that supports a higher-order singularity 
(a third-order exceptional point), the active structure is implemented 
on an InP-based quantum well semiconductor wafer. The gain–neutral–
loss profile is subsequently imposed by dynamically shaping the optical 
pump beam. In all cases, the resonance frequencies are fine-tuned using 
micro-heaters. By doing so, we can independently control the real and 
imaginary components of the refractive-index distribution, which is 
essential for establishing higher-order exceptional points. The resulting 
bifurcations in the frequency domain are monitored and characterized 
by allowing the system to operate in the lasing regime.

For the ternary parity–time-symmetric coupled micro-ring system 
(Fig. 1b), the two side ring resonators are subjected to equal amounts of 
gain and loss (g) while the middle ring remains neutral. In addition, the 
rings evenly exchange energy with each other with a coupling strength κ.  

A metallic (Au) heater is positioned under each cavity, with a vertical 
separation of approximately 3 μ​m. A scanning electron micrograph 
(SEM) image of the structure, at an intermediate stage of fabrication, 
is shown in Fig. 1c. The modal field evolution in this structure obeys 
idV/dt =​ HV, where V =​ (a, b, c)T represents the modal column vector, 
a, b and c represent field amplitudes in the amplifying, neutral and lossy 
cavities, respectively, and t represents time. H is the associated 3 ×​ 3 
non-Hermitian Hamiltonian:
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in which +​g (−​g) accounts for the gain (loss). Without loss of generality,  
here the external perturbation ε is imposed on the cavity with gain; 
however it could be introduced anywhere along the diagonal of the 
matrix or to any of the coupling terms.

In the absence of any disturbance (ε = 0), assuming a harmonic 
dependence of V of the form ω−e i tn , we can determine the complex 
eigenfrequencies ωn, (n ∈​ {−​1, 0, 1}) of the ternary system directly by 
solving the cubic algebraic equation

ω ω κ− + =g( 2 ) 0n n
2 2 2

This equation indicates that when the gain/loss contrast reaches a 
critical value (in this case, κ=g 2 ), all three eigenfrequencies coalesce 
at ωn =​ 0 and the system exhibits a third-order exceptional point. 
Moreover, at this specific point, the three eigenvectors of the ternary 
photonic molecule also coalesce, at = − −a b c A i( , , ) (1, 2 , 1)EP

0 , 
where A0 is a normalization constant, indicating that the energy in the 
central (neutral) cavity is twice that circulating in the other two 
resonators (which are subject to gain and loss).
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Figure 2 | Bifurcations of complex eigenfrequencies around a third-
order exceptional point. a, The real parts of the eigenfrequencies (Re(ωn)) 
of the ternary parity–time-symmetric system as a function of the 
normalized gain/loss contrast g/κ and the detuning ε/κ. The third-order 
exceptional point (EP3) occurs at κ=g 2  (blue plane) and ε =​ 0. b, The 
imaginary parts of the eigenfrequencies (Im(ωn)). c, d, Analytical 

(dashed lines) and numerical (solid lines) solutions for the real (c) and 
imaginary (d) parts of the eigenfrequencies, for κ=g 2 . e, Analytical 
(dashed red line) and numerical (solid green line) results for 
Re(ω0 −​ ω1)/κ =​ Δ​ω/κ, demonstrating cube-root behaviour as a function 
of the detuning. f, The results from e on a logarithmic scale. The slope of 
1/3 confirms the cube-root response.
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To understand how a small detuning or variation in the gain cavity 
affects the arrangement, we assume a small value for ε. In this case, the 
three complex eigenfrequencies of the configuration are obtained by 
numerically solving the characteristic cubic equation associated with 
the Hamiltonian in equation (1) (see Fig. 2a, b). Of particular interest 
is how this system reacts around the third-order exceptional point, 
when κ=g 2 . The response is highlighted in the two cross-sections 
(in both the real and imaginary domains) in Fig. 2a, b, and in Fig. 2c, d  
(solid curves). The difference between two eigenfrequencies (in this 
case, ω0 and ω1) is also plotted (Fig. 2e, solid curve) as a function of ε. 
By considering the logarithmic behaviour of this curve (see Fig. 2f, solid 
line), we find that the slope of the response is 1/3, thus confirming that 
perturbations around a third-order exceptional point experience an 
enhancement of the form ε1/3.

Alternatively, we can explain this behaviour using perturbation 
theory. Around the third-order exceptional point, the characteristic 
equation is

ω ω ω κ κ− + + =ε εi( 2 ) 0n n n
3 2

The roots of this cubic equation can be self-consistently obtained by 
assuming that ω = + +/ / �ε εc cn 1

1 3
2

2 3 , contrary to what might be 
expected in Hermitian settings, in which the perturbative series 
proceeds in integer powers of ε. From these expressions, we find that

ω κ κ= +− + π/ / / + π/ / /ε ε
ie 2

3
en

i n i n(2 1) 3 2 3 1 3 (2 1) 3 1 3 2 3

with n ∈​ {−​1, 0, 1}. The response of the system based on this 
expression (Fig. 2c–f, dashed curves) is in close agreement to that 
obtained numerically. Our analysis indicates that the real parts of ω0 
and ω1 diverge from each other in an ε1/3 fashion. (More details about 
the eigenvalue spectrum of these systems is provided in Methods 
section ‘Coupled mode analysis of the ternary system’.) Consequently, 
the sensitivity of the ternary system can be assessed by monitoring 
the separation of the ω0 and ω1 spectral lines, which is expected to 
approximately follow

ω κΔ = // ε3 2EP3
2 3 3

The micro-ring resonators used in this study have radii of 10 μ​m 
(with a free spectral range of approximately 10 nm), widths of 500 nm 
and heights of 210 nm. The cross-section of each ring is designed 
to ensure single transverse mode conditions at the wavelength 
of operation λ0 ≈​ 1,600 nm. The system was implemented using 
InGaAsP quantum wells to provide the necessary modal gain, which 
is estimated to be about 100 cm−1. Given that the optical group index 
in these nano-waveguides is approximately 4 around the operating 
wavelength, g ≈​ 1012 s−1. The coupling coefficients κ reach similar levels 
when varying the distance between neighbouring rings. Details about 
the fabrication procedure of these structures are provided in Methods 
section ‘Fabrication’.

In our experiments, the imaginary components of the refractive 
index in the different regions of the structure are engineered by 
spatially shaping the pump beam at 1,064 nm (see Methods section 
‘Measurement set-up’). The real part of the refractive index is fine-tuned 
using micro-heaters to ensure that the cavities are phase-matched. Both 
of these procedures are necessary to bring the coupled micro-ring lasers 
into the exceptional-point regime. Once the configuration is set to 
operate at such a state, the gain cavity is perturbed by supplying current 
I into the corresponding heater. By doing so, the change in the refractive 
index is varied linearly with the electrical power that is dissipated in 
the resistor (ε ∝​ I2). As a result, the lasing frequencies begin to diverge 
and the ensuing splitting as a function of ε is monitored. The relation-
ship between the induced differential detuning and the power of the 
heaters is experimentally characterized by intentionally decoupling 
the micro-rings (see Methods section ‘Characterization of thermally 
applied perturbations’).

Before carrying out experiments in the more involved ternary 
system, we first characterize the bifurcation behaviour of a second-
order exceptional point associated with a parity–time-symmetric 
coupled micro-ring structure (Fig. 1a, left). As shown in Methods 
section ‘Coupled mode analysis of the binary system’, once a small 
frequency mismatch ε is thermally introduced to the optical oscillator 
around the second-order exceptional point, the two lasing frequencies 
split according to ω κΔ = ε2EP2 . The coupling factor in this binary 
arrangement is measured to be about 1012 s−1 when the rings are 
separated29 by 100 nm. Figure 3a clearly demonstrates a square-root 
wavelength splitting in response to changes in the power dissipated in 
the heater, in accordance with theoretical expectations. The observed 
linear slope of 1/2 in the corresponding logarithmic plot affirms this 
behaviour (Fig. 3a, inset). Figure 3b depicts the measured enhancement 
in sensitivity as a function of the induced perturbation (in terms of the 
shift in resonance frequency). In our study, the enhancement is defined 
in terms of experimentally accessible quantities (Δ​ωEP2/ε ∝​ (κ/ε)1/2). 
Because of the presence of an exceptional point, the enhancement factor 
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Figure 3 | Binary parity–time-symmetric system operating around 
a second-order exceptional point. a, Observed frequency splitting as 
a function of the power that is dissipated in the heaters (ε ∝​ I2). The 
perturbation is imposed on the active cavity. The inset demonstrates a 
slope of 1/2 on a logarithmic scale, confirming the existence of a second-
order exceptional point. The solid lines are the simulated square-root 
behaviour, the filled circles indicate experimental data, and the error 
bars indicate the uncertainty in frequency measurements due to the 
spectrometer. b, Measured enhancement factor as a function of the 
induced perturbation. For a detuning of less than 10 GHz, an  
enhancement of about 13 times is observed. The enhancement is defined 
in terms of experimentally accessible quantities (Δ​ωEP2/ε, where ε is 
the measured detuning for an isolated cavity at similar heater power). 
The solid line shows the curve Δ​ωEP2/ε ∝​ (κ/ε)1/2 and squares depict 
experimental data. The inset shows the perturbation as a function of the 
dissipated power, where the solid line is a linear fit to the measured values 
(circles).
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increases for small values of ε. In this case, we observed an enhancement 
of up to 13 times in the detuning range below 10 GHz (see Methods 
section ‘Role of coupling in sensitivity enhancement’ for more details).

We next investigate the sensitivity of a ternary parity–time-symmetric  
system when operating close to a third-order exceptional point. The 
structure consists of three equidistantly spaced micro-rings, with a 
coupling strength of approximately 9 ×​ 1011 s−1 when separated by 
150 nm. To establish parity–time symmetry in the system, the pump 
beam is completely withheld from one of the side rings using a knife 

edge. In addition, the central (neutral) ring is partially illuminated 
while the third ring is fully pumped. By adjusting the position of the 
knife edge and the pump level, the three lasing modes of the structure 
gradually coalesce into one line (approximately 1,602 nm), which is 
associated with the emergence of a third-order exceptional point. The 
intensity profile (Fig. 4a) of the lasing mode at this point is captured 
using a charge-coupled device (CCD) camera and is found to be in 
agreement with that expected from theory. Integrating the intensity over 
the captured image reveals a distribution of (1, 1.95, 1.16); that is, the 
intensity in the neutral element is almost twice that in the others. Once 
the system reaches the regime in which the third-order exceptional 
point exists, the heater underneath the pumped cavity is activated. 
As a consequence of this perturbation, the single lasing mode splits 
into three distinct branches, as anticipated from theory (Fig. 2c). The 
spectral evolution of this transition is collected using a spectrometer  
with an array detector (Fig. 4b). We note that the spectral power and 
linewidth of each eigenvector are associated with the imaginary part 
of the corresponding eigenfrequency. In this regard, Fig. 4b indicates 
that the eigenfrequency with the largest real part (longest wavelength) 
is the one that exhibits the highest gain, as theoretically expected from  
Fig. 2c, d. Moreover, Fig. 4b confirms that the laser linewidth is 
enhanced when the system operates in the parameter regime that 
corresponds to a third-order exceptional point, as is known to be 
the case, owing to the so-called Petermann factors30. As previously 
indicated, in this experiment we monitor the difference between the 
resonance frequencies ω0 and ω1. Figure 4c verifies that the frequency 
separation Δ​ωEP3 exhibits cube-root behaviour as a function of ε; this 
is also confirmed by plotting these data on a logarithmic scale, from 
which we directly infer a slope of 1/3 (Fig. 4c, inset). The sensitivity 
enhancement factor (Δ​ωEP3/ε ∝​ (κ/ε)2/3) corresponding to the ternary 
photonic molecule is plotted in Fig. 4d. In this case, the sensitivity is 
magnified approximately 23 times when the detuning between the 
active and neutral resonators is below 5 GHz. Further discussion 
about the practical aspects of sensitivity enhancement are provided in 
Methods section ‘Further discussion’.

In conclusion, we have presented an experimental demonstration of 
higher-order exceptional points in an optical parity–time-symmetric 
coupled micro-resonator system. The response of the ternary lasing 
molecule exhibits cube-root behaviour, which could be used to 
improve the sensing performance of micro-resonator arrangements. 
Our approach can in principle be adopted in various other photonic 
configurations. Furthermore, the properties associated with these 
higher-order degeneracies can be exploited in fields other than optics, 
by introducing non-Hermiticity to enhance sensing capabilities. Our 
results may pave the way towards a new class of on-chip ultrasensitive 
sensing system.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Response of a ternary parity–time-symmetric system biased 
at a third-order exceptional point. a, Intensity profile (colour scale) of the 
lasing mode in a ternary parity–time-symmetric arrangement at a third-
order exceptional point. The energy in the central cavity is approximately 
twice that in the side resonators, because the eigenvector is given by 

= − −a b c A i( , , ) (1, 2 , 1)EP
0 . b, Spectra of the three lasing modes 

(identified by the three peaks) as the system departs from the exceptional 
point with increasing I2 ∝​ ε. c, The splitting between two neighbouring 
lasing lines as a function of I2. Inset shows a line with a slope of 1/3 on a 
logarithmic scale. The solid lines are the simulated cube-root behaviour, 
the filled circles denote experimental data, and the error bars indicate the 
uncertainty in frequency measurements due to the spectrometer. d, The 
measured sensitivity enhancement is about 23 times for detunings of less 
than 10 GHz. The solid line shows the curve Δ​ωEP3/ε ∝​ (κ/ε)2/3 and 
squares indicate measured values. Inset, the perturbation as a function of 
I2, where circles denote experimental data and the solid line is a linear fit.
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Methods
Coupled mode analysis of the ternary system. In this section, we provide an 
analytical approach to studying the evolution of eigenfrequencies of a ternary 
parity–time-symmetric photonic molecule around an exceptional point. In such 
configurations, one resonator (with modal field a) is subjected to a gain g, the 
central cavity (with modal field b) is kept neutral and the third resonator (with 
modal field c) experiences an amount of loss −​g equal to the gain of the first 
resonator. In the time domain, and considering sinusoidally time varying fields 
ω−e i tn , the modal amplitudes a, b and c obey the coupled differential equations
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where κ denotes the coupling strength between adjacent cavities. To determine the 
eigenvalues of this system, we use the representation = = ω−V Va b c( , , ) en

i tT n , 
which leads to an eigenvalue equation of the form H0Vn =​ ωnVn, where the 
Hamiltonian H0 is
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For non-trivial solutions (det(H0 −​ ωnI) =​ 0, where I is the identity matrix), we 
obtain the characteristic equation

ω κ ω− − =g(2 ) 0n n
2 2 2

which results in the following three eigenvalues:

ω ω κ
κ
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For κ<g 2 , all three eigenvalues are real. In this case, the system is considered 
to be in a regime in which parity–time symmetry is not broken. For κ>g 2  , two 
of the three eigenvalues become purely imaginary, resulting in a situation in which 
parity–time symmetry is broken. At κ=g 2 , as the system transitions from the 
unbroken to the broken regime, all three eigenvalues and their corresponding 
eigenvectors coalesce. This juncture at which the dimensionality of the system 
abruptly changes from three to one is known as a third-order exceptional point. 
At this point, the eigenvalues are all equal (ωn =​ 0), and their associated 
eigenvectors are

= = =





−
−






−V V V i

1
2
1

1 0 1

To study the bifurcation properties of the eigenvalues, it is convenient to introduce 
a normalized parameter κ= /�g g . The perturbed Hamiltonian H can then be 
written as
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where, ε1, ε2 and ε3 represent the perturbations induced on gain, neutral and loss 
cavities, respectively. For the cases we study here, we assume that the perturbations 
negligibly affect the coupling. As a result, the perturbation terms (ε1, ε2 and ε3) 
appear only along the diagonal elements of H. The determinant of H equated to 
zero is
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where ω ω κ= /�n n . For a system that is biased at the exceptional point ( =�g 2), 
the associated characteristic equation is

ω ω ω= − + + + + + − −
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Because �ε 11,2,3 , higher-order terms can be ignored and the above simplifies to
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Here, three different scenarios are investigated, in which the perturbation is on  
(i) the gain element, (ii) the neutral element and (iii) the gain and neutral elements. 
The third scenario is the most relevant to our experiment, in which a heater located 
underneath the gain cavity introduces the perturbation, because the generated heat 
perturbs the neutral cavity as well, owing to thermal diffusion.
Perturbing the gain cavity only. In this case, ε1 =​ ε and ε2 =​ ε3 =​ 0 so equation (2) 
reduces to

ω ω ω− − + =� � �ε ε εi 2 0n n n
3 2

This equation can be perturbatively expanded using a Newton–Puiseux series. 
Considering the first two terms only, ω ~ +/ /� ε εc cn 1

1 3
2

2 3, with the coefficients c1 
and c2 being complex constants, results in
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Forcing the coefficients of the first two terms to be zero, we obtain three sets of 
values for the coefficients c1 and c2, corresponding to the three eigenvalues:
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The bifurcations in the eigenvalues now acquire the form 
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As equation (3) indicates, the frequency splitting between ω�0 and ω�1 and between 
ω−� 1 and ω�1 follow the cube-root of ε, whereas the difference between the real parts 
of ω�0 and ω�1 is of the order of ε2/3. This behaviour can be characterized experi-
mentally in the spectral domain by monitoring the resonant frequency splitting 
of, for example, ω�0 and ω�1. This splitting can be written as

ωΔ ~ /� εRe( ) 3
2EP3

1 3

In general, a detection target such as a nanoparticle or biological subject can alter 
not only the resonance frequency of the cavity sensor, but it also its Q-factor. In the 
proposed model, the applied perturbation ε can be complex, which accounts for 
the scattering loss induced by the target. In this regard, we write the perturbation 
as ε =​ ε0 +​ iβε0. However, small amounts of loss (for example, 0 <​ β <​ 1) introduced 
by a sensing subject do not have a large effect on the performance of the sensor that 
exhibits a third-order exceptional point.
Perturbing the neutral cavity only. For a perturbation of the neutral cavity, ε2 =​ ε and 
ε1 =​ ε3 =​ 0. As a result, the characteristic equation (equation (2)) can be written as

ω ω− − =� �ε ε2 0n n
3 2

Again assuming a Newton–Puiseux perturbative expansion for ω�n, we obtain
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The three sets of values for the coefficients c1 and c2 are
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and the resulting bifurcations in the eigenvalues acquire the form
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Perturbing the gain and neutral cavities. In this case, we assume the stronger 
perturbation is applied to the cavity with gain; therefore, ε1 =​ ε, ε2 =​ αε (α <​ 1) 
and ε3 =​ 0. The characteristic equation, according to equation (2), is

ω α ω ω α= − + − + −ε ε εi0 (1 ) 2 (1 2 )n n n
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After expanding the eigenvalues using ω ~ +/ /� ε εc cn 1
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By forcing the coefficients of the first two terms to be zero, we fine c1 and c2 to be
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The bifurcations in the eigenvalues now acquire the form
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The similarity between equations (4) and (3) demonstrates that the scenario in 
which the gain and neutral cavities are perturbed is very similar to that in which 
the perturbation affects the gain cavity only; the only differences are the (1 −​ 2α)1/3 
coefficients. Therefore, the bifurcation characteristics in the latter scenario can to 
some extent be applied in the former scenario as well. For example, the frequency 
splitting between ω�0 and ω�1 follows the cube-root of the induced perturbation and 
can be written as

ω αΔ ~ − / /� εRe( ) 3
2

(1 2 )EP3
1 3 1 3

This equation indicates that the presence of ε2 reduces the sensitivity of the system 
by a factor of α−2 13 . Therefore, the sensitivity can be further improved when 
the outer cavities are fully isolated from the introduced perturbation.
Fabrication. Extended Data Fig. 1a shows the fabrication steps involved in 
the preparation of the coupled micro-ring structures used in this study. The 
multiple-quantum-well gain system consists of six Inx=0.734Ga1−xAsy=0.57P1−y 
wells (thickness, 10 nm), each sandwiched between two cladding layers of 
Inx=0.56Ga1−xAsy=0.938P1−y (thickness, 20 nm), all grown on a p-type InP 
substrate. The quantum wells are covered by a 10-nm-thick InP protective layer. 
The epitaxially grown wafer, using metalorganic chemical vapour deposition, was 
supplied by OEpic Semiconductors Inc.

To fabricate the micro-ring resonators, hydrogen silsesquioxane (HSQ) 
solution in methyl isobutyl ketone (MIBK) was first spin-coated on the wafer as a 
negative-tone inorganic electron beam resist; the wafer was then patterned using 
electron beam lithography. The structures were developed using tetramethyl
ammonium hydroxide (TMAH) and subsequently transferred to the wafer through 
a reactive-ion-etching (RIE) process. The dry etching involves H2:CH4:Ar gases 
with flow rates of 40:4:20 standard cubic centimetres (sccm), a RIE power of 150 W 
and a chamber pressure of 30 mT. An SEM image of the sample at the end of this step 
is shown in Fig. 1b. Next, a 500-nm-thick silicon dioxide (SiO2) film is deposited 
on the structure using plasma-enhanced chemical vapour deposition (PECVD) to 
promote the adhesion of bisbenzocyclobutene (BCB). Subsequently, a 3-μ​m-thick 
layer of BCB was spin-coated on the sample and cured for planarization. The  
pattern of the heaters was then aligned on the top of the rings and projected onto 
a NR71000PY negative resist via photolithography. The pattern was developed in 
RD6 developer for 7 s. Next, we deposited 10 nm of titanium (for adhesion) and 
150 nm of gold using thermal evaporation. The sample was then immersed in RR41 
resist remover that was heated up to 100 °C to lift off the remaining photoresist. A 
microscope image of the sample at this stage (Extended Data Fig. 1b) shows the 
gold heaters that are fabricated at a vertical distance of 3 μ​m above the rings. This 
distance was chosen to eliminate the optical interaction between the cavity mode 
and the metallic section. The sample was then wire-bonded to a 16-pin carrier  
(TO8 header) to provide access to the heaters during the experiment (Extended Data 
Fig. 1c). Subsequently, the patterns were covered with SU8 photoresist for protec-
tion and to provide mechanical support. Finally, the InP substrate was removed by 
wet etching in hydrochloric acid (HCl). This wet etching process is highly selective 
and stops abruptly after removing the InP substrate, leaving the InGaAsP quantum  
wells intact. This process leaves the micro-rings partially embedded in the 
SiO2 matrix and exposed to air. Afterwards, the structure is accessible for the  
measurement from the backside through a hole drilled in the header (Extended 
Data Fig. 1d).
Measurement set-up. The micro-ring arrangements were optically pumped with 
a pulsed 1,064-nm laser (SPI fibre laser). A schematic of the measurement set-up 

is provided in Extended Data Fig. 2. The diameter of the beam was arranged such 
that at the surface of the sample it had a diameter of about 100 μ​m. A microscope 
objective with a numerical aperture of 0.42 was used to project the pump beam 
onto the rings and to collect the output light from the samples. Alignment of the 
pump beam to the desired cavity was performed by imaging the sample surface 
through two cascaded 4-f imaging systems onto an infrared CCD camera (Xenics 
Inc.), using a broadband infrared light source. Output spectra were obtained using 
a spectrometer (Horiba Scientific iHR320) equipped with a grating of 900 grooves  
per mm in conjunction with an electrically cooled InGaAs detector (Synapse 
EM). The spectrometer entrance slit was set to 100 μ​m to obtain the resolution of 
approximately 0.13 nm. To establish the parity–time symmetry in the structures, the 
micro-rings were pumped selectively by using a movable knife edge, imaged on the 
surface of the sample. The gain/loss distribution required was realized by adjusting 
the intensity of the pump beam and position of the knife edge. Extended Data Fig. 3  
shows the intensity profile of the pump beam at the sample, with and without the 
image of the knife edge. The current to the heaters were supplied by precision 
current sources (ILX Lightwave) to ensure stability of the induced thermal 
perturbations. Extended Data Fig. 4a and b depicts the associated ring resonators 
when they are all evenly pumped, and the three heaters imaged on the measure-
ment station using a broadband near-infrared source, respectively.
Characterization of thermally applied perturbations. This section provides some 
considerations regarding the experimental characterization of perturbations in 
the coupled micro-ring system. Generally, after reaching the exceptional point, 
the perturbation is applied through the micro-heater that is incorporated under 
the cavity with gain. However, owing to thermal diffusion, the power dissipated by 
this heater (P =​ RI2, with R the resistance) also affects the refractive index of other 
cavities, although to a lesser degree. One way to correctly factor in the effect of 
this heat diffusion is to intentionally decouple the micro-rings involved and then 
measure the resultant detuning in the resonance frequency (Δ​ω) of the cavities 
as a function I2.

In the binary configuration (Extended Data Fig. 5a), the effective imposed 
perturbation is the difference between the shifts in the resonance frequencies of 
the two cavities, ε =​ Δ​ω1 −​ Δ​ω2, which is measured to be ε ≈​ 1.17I2. In this case, the 
sensitivity enhancement (Fig. 3b) is defined as Δ​ωEP2/ε. Note that the relationship 
between the imposed detuning and the power of the heater is a function of various 
parameters in the system, such as ohmic resistance and the vertical separation of 
the heaters from the rings; hence it may vary from sample to sample. Consequently, 
the only way to reliably estimate the change in refractive index due to heat diffusion 
is to fully decouple the rings and measure it directly, as explained above.

For the ternary system (Extended Data Fig. 5b), the situation is yet more 
complicated because, in effect, two different perturbations are present. By changing 
the current of the heater, the perturbation will be applied not only to the cavity with 
gain but also to the other two cavities. In this respect, the most pronounced 
perturbation is between the gain and loss resonators (ε1 =​ Δ​ω1 −​ Δ​ω3). In addition, 
there is an inevitable perturbation between the neutral and loss cavities 
(ε2 = Δω2 − Δω3). In our system, these two values were measured to be ε1 =​ 1.4I2 and 
ε2 =​ 0.82I2. Following the approach in Methods section ‘Coupled mode analysis of 
the ternary system’, we write ε2 =​ αε1, where α is measured to be 0.6. As discussed 
in Methods section ‘Coupled mode analysis of the ternary system’, the presence of 
ε2 in the system reduces the sensitivity by α−2 13 , which translates to a decrease 
in the ensuing frequency splitting and consequently the enhancement factor by a 
factor of two. For the ternary system, the sensitivity enhancement (Fig. 4d) is 
defined as Δ​ωEP3/(ε1 −​ ε2).
Coupled mode analysis of the binary system. A similar approach to that outlined 
in Methods section ‘Coupled mode analysis of the ternary system’ can be used to 
analyse a binary parity–time-symmetric photonic molecule. This system consists 
of two coupled cavities, one (a) that experiences a gain g and its counterpart (b), 
which is subjected to an equal amount of loss −​g. The field evolution in this case is
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Using the representation = ω−Va b( , ) en
i tT n , this equation corresponds to the eigen-

value equation H0Vn =​ ωnVn. The matrix H0 is
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Setting det(H0 −​ ωnI) =​ 0, where here I is the identity matrix, the corresponding 
characteristic equation and associated eigenfrequencies are

ω κ= − gn
2 2 2
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and
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In this configuration, parity–time symmetry is unbroken under the condition 
g <​ κ, which implies that the two eigenvalues given by equation (5) are real. 
However, for g >​ κ, the two eigenvalues become imaginary and the system is said 
to have entered a broken-symmetry phase. At g =​ κ, the system is at its second-
order exceptional point, at which the two eigenvalues coalesce (ω−1 =​ ω1 =​ 0). In 
addition, at this point the two eigenvectors are also identical:
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The generalized perturbed Hamiltonian for this binary configuration can be 
written as
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where the normalization κ= /�g g  is applied. Eigenvalues for H can therefore be 
found from the determinant
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in which ω ω κ= /�n n . The resulting characteristic equation is
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Biasing the system around the exceptional point ( =�g 1) transforms the 
characteristic equation to
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2

1 2 1 2 1 2

Without loss of generality, we assume that the perturbation affects only the gain 
cavity (ε1 =​ ε, ε2 =​ 0). In this case, the characteristic equation above reduces to

ω ω= − −� �ε εi0 n n
2

In contrast to the analysis of third-order exceptional points, the Newton–Puiseux 
series that begins with a square-root element is required, because the exceptional 
point is of order two. Hence, the first two terms of this series can be written as
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By inserting the above expansion into equation (6), we can determine the 
coefficients c1 and c2:
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Setting the first two terms in this equation to zero leads to the following two sets 
of values:
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The resulting eigenvalue bifurcations are
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These expressions indicate that for a binary arrangement the real parts of the eigen-
frequencies bifurcate with a square-root dependence on the applied perturbation 
( ωΔ =� εRe( ) 2EP2 ).
Role of coupling in sensitivity enhancement. For a two-ring system, the sensi-
tivity enhancement follows the square-root of the coupling factor. The coupling 
strength can be determined experimentally by measuring the frequency splitting 
of the modes of a dimer laser directly when the two rings are equally pumped. 
Extended Data Fig. 6a shows how the coupling strength affects the perturbation-
induced splitting. It is evident in Extended Data Fig. 6a that the sensitivity of the 
system is enhanced by increases in the coupling strength between the resonators. 
The same results are shown in a logarithmic scale in Extended Data Fig. 6b, and 
confirm the desired square-root behaviour (lines with a slope of 0.5).
Further discussion. In general, the gain threshold for lasing and the gain that 
is required to reach the exceptional point can be designed to be different. As 
long as the system is designed such that the gain required for exceptional point 
is larger than the gain threshold for each ring to lase, the system can be a laser at 
the exceptional point31,32.

As indicated in Methods section ‘Characterization of thermally applied 
perturbations’, the reported sensitivity response of the ternary system can be 
further boosted if the perturbation is applied on only one of the cavities. In our 
experiment, as a result of thermal diffusion, both (gain and neutral) resonators 
were differentially detuned and so the achievable enhancement was reduced by 
a factor of two. Finally, we note that in all of our measurements the observed 
maximum enhancement is limited by the detection limit that is imposed by the 
linewidth of our lasers, which can in principle be reduced either by switching to 
other gain systems or by using coherence-improving geometries33,34. The linewidth 
enhancement at the exceptional point, although still a subject of debate, is another 
important consideration in using these systems35,36. Such systems may find appli-
cation in rotation sensing37.
Data availability. The datasets generated during and analysed during this study 
are available from the corresponding author on reasonable request.
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Extended Data Figure 1 | Fabrication steps in realizing parity–time-symmetric photonic molecules. a, Schematic of the fabrication process.  
b, A microscope image of the fabricated metallic micro-heaters. c, The heaters are electrically connected to the pins of the header via wire bonding.  
d, The photonic molecule systems are accessible for measurement from the back side through a hole in the header.
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Extended Data Figure 2 | Measurement station for characterizing sensitivity at higher-order exceptional points. A schematic of the micro-
photoluminescence experimental set-up. BS, beam splitter; NIR, near-infrared; NA, numerical aperture.
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Extended Data Figure 3 | Pump distribution. The intensity profile of the 
pump beam at the sample without (a) and with (b) the image of the knife 
edge. By adjusting the intensity of the pump beam and the position of the 
knife edge, the desired gain/loss distribution is realized.
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Extended Data Figure 4 | Sample imaging. a, The intensity profile of 
three coupled micro-ring resonators when they all pumped equally. b, The 
associated heaters imaged on the measurement station using a broadband 
near-infrared source.
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Extended Data Figure 5 | Characterizing the heat induced detuning.  
a, b, The change in resonance frequency (Δ​ω) of the intentionally 
decoupled cavities as a function of I2 (heater power) in the binary structure 
(a) and the ternary structure (b). The applied perturbation varies linearly 
with the power of the heater, and is imposed differentially on the micro-
rings with respect to their distance from the active heater. The colours of 
the rings are used for distinction purposes and not as a representation of 
gain or loss. In all cases, solid circles indicate measured data and solid lines 
denote linear fits to the frequency response.
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Extended Data Figure 6 | Effect of coupling on enhancing sensitivity.  
a, b, The wavelength splitting as a function of the differential perturbation 
applied to the gain cavity, for parity–time systems with different coupling 
coefficients (solid curves depict square-root simulations) and for a single 
micro-ring (straight line), on linear (a) and logarithmic (b) scales. In all six 
cases, filled circles indicate measured values and the error bars represent 
the uncertainty in the measurement because of the resolution limit of the 
spectrometer.
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Erratum
doi:10.1038/nature24024

Erratum: Enhanced sensitivity at 
higher-order exceptional points
Hossein Hodaei, Absar U. Hassan, Steffen Wittek, 
Hipolito Garcia-Gracia, Ramy El-Ganainy, 
Demetrios N. Christodoulides & Mercedeh Khajavikhan

Nature 548, 187–191 (2017); doi:10.1038/nature23280

In this Letter, the y-axis labels of the inset to Fig. 3a should have been 
102 rather than 101 (top label) and 101 rather than 100 (bottom label). 
The original paper has been corrected online.

CORRECTIONS & AMENDMENTS
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