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Non-Hermitian physics and PT symmetry
Ramy El-Ganainy1, Konstantinos G. Makris2, Mercedeh Khajavikhan3, Ziad H. Musslimani4,
Stefan Rotter5 and Demetrios N. Christodoulides3*

In recent years, notions drawn from non-Hermitian physics and parity–time (PT) symmetry have attracted considerable
attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected
features has initiated an intense research e�ort to explore non-Hermitian systems both theoretically and experimentally.
Here we review recent progress in this emerging field, and provide an outlook to future directions and developments.

Conservation of energy is a fundamental concept that shapes
our understanding of physical reality. In quantum physics,
this requirement demands that a closed system exhibits real

eigenenergies—naturally leading to theoretical formulations based
onHermitianHamiltonians. Inmany situations, however, one is not
interested in the system as a whole, but only in a limited subspace
of it. In this case, energy can be exchanged between this specific
quantum subsystem and its environment. One of the pioneering
studies on the behaviour of such open quantum systems was that
of George Gamow on alpha decay1, where he showed that a particle
may escape the nucleus via tunnelling at a rate that can be effectively
described through a complex energy eigenvalue. In doing so, he
found that the real and imaginary parts of these eigenvalues are
related to the experimentally observed energy levels and widths
of the corresponding nuclear resonances. In a subsequent work,
complex (non-Hermitian) potentials were introduced by Feshbach,
Porter and Weisskopf, to model scattering interactions between
neutrons and nuclei2. In this case, the imaginary part of the
potential was responsible for neutron absorption and the formation
of compound nuclei.

Frommicroscopic to macroscopic non-Hermiticity
Whereas in these early attempts the use of non-Hermiticity was to a
great extent phenomenological, much work was thereafter invested
in providing amore formal basis for describing the dynamics of open
quantum systems like, for example, the Lindblad formalism3. These
more rigorous approaches indicate that when a quantum system
couples to a surrounding environment or bath, the dynamics of
the subsystem itself becomes non-Hermitian and features quantum
jumps. In this respect, accounting for the noise induced by these
jumps is necessary to keep the quantum mechanical commutation
relations intact4. Whereas for microscopic systems such a quantum
description is crucial, macroscopic settings can be well described by
semi-classical approaches in which the noise terms are neglected.
At this mean-field level, the process of quantum dissipation can be
encapsulated in a non-Hermitian ‘effective Hamiltonian’5–11. This
strategy provides valuable insight into new classes of phenomena
that are by nature difficult to address utilizing standard Hermitian
representations. In fact, adding a non-Hermitian component to a

Hamiltonian does significantly more than merely broadening its
resonances and allowing its eigenstates to decay. In particular, it was
realized that eigenmodes could merge with each other at so-called
‘exceptional points’ (also known as branch-point singularities)7,8,11.
What is remarkable about these degeneracies is that, not only
the eigenvalues coalesce at these points (in both their real and
imaginary parts), but also their corresponding eigenvectors become
completely parallel.

An importantmilestone in the physics of non-Hermitian systems
was the discovery, by Carl Bender and Stefan Boettcher, that a large
class of non-conservative Hamiltonians can exhibit entirely real
spectra as long as they commute with the parity–time (P̂T̂ ) oper-
ator (see Box 1)12. To some extent, this counterintuitive result goes
against the commonly held view that real eigenvalues are associated
only with Hermitian observables. Starting from the aforementioned
premise, one can show that a necessary (but not sufficient) condition
for PT symmetry to hold is that the complex potential involved
should satisfy V (r)= V ∗(−r)12, where r is the position vector.
In such pseudo-Hermitian configurations the eigenfunctions are
no longer orthogonal—that is, 〈m|n〉 6= δmn—and hence the vector
space is skewed. Even more intriguing is the possibility of a sharp
symmetry-breaking transition once the non-Hermiticity parameter
exceeds a certain critical value. In this latter regime, theHamiltonian
and the P̂T̂ operator no longer display the same set of eigenfunc-
tions (even though they commute). As a result, the eigenvalues of
the system cease to be real. This PT-symmetry-broken phase is
associated with the appearance of exceptional points13.

PT symmetry meets optics
Whereas the implications of these mathematical developments have
been a matter of theoretical debate13–15 for many years, it has been
recently recognized that optics can provide a fertile ground where
PT symmetric concepts can be fruitfully exploited16–20. In optical
systems, PT symmetry can be readily established by judiciously
incorporating gain and loss—that is, the refractive index profile now
plays the role of the complex potential (see Box 1 and Fig. 1). This
paradigm shift subsequently led to a flurry of similar research activ-
ities in other physical settings, such as electronics21, microwaves22
mechanics23, acoustics24, and atomic systems25–27, to mention a few.
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Box 1 | Exceptional points in various settings.

Non-Hermitian phenomena are ubiquitous in nature—they
appear even in low-dimensional settings. An analytically tractable
example is that of a two-level system describing the physics of
two coupled sites with gain and loss. In this case, the Hamiltonian
operator is given by:

Ĥ=
(
δ− ig1 κ

κ ig2

)
, Ĥ=|φ1,2〉=E1,2|φ1,2〉 (1)

where κ is the coupling constant, δ is a detuning parameter,
and g1, g2 describe the amount of dissipation/amplification per
site. When g1= g2= 0, the eigenvalues are real and the energy
is conserved during time evolution. On the other hand, if the
complex diagonal terms (g1, g2) are non-zero, the matrix is non-
Hermitian, and therefore the resulting eigenvalues (En) can in
general be complex, leading to a time evolution with amplification
or dissipation. In this case, the corresponding right eigenvectors
are no longer orthogonal. The left eigenvectors can, in turn,
be obtained from the adjoint problem Ĥ †

|φ̃1,2〉= E∗1,2|φ̃1,2〉. The
orthogonality between the right and left modes is expressed by the
bi-orthogonality relation (〈φ̃1,2|φ1,2〉=0). An interesting scenario
arises at the so-called exceptional point, occurring at δ= 0 and
κ = |g1 + g2|/2. At this parameter point, not only are the two
eigenvalues identical (see Fig. B1), but also the two eigenvectors
become completely parallel.
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Figure B1 | Riemann surfaces of the complex eigenvalues of the matrix Ĥ
versus the (δ,κ)-parameters. Real (a) and imaginary (b) part of
the eigenvalues.

For the special case of two fully tuned (δ=0) coupled sites having
equal gain and loss (g1= g2= g ), the Hamiltonian Ĥ from equa-
tion (1) becomes parity–time (PT) symmetric. This unique class
of non-Hermitian Hamiltonians, discovered in 1998, is capable of
exhibiting entirely real spectra. More specifically, when g/κ <1,
the two eigenvalues are real and are given by E1,2=±κ cosθ ,
where θ = sin−1(g/κ), and the biorthogonal eigenvectors are
|φ1,2〉=[1 ±e±iθ ]T . In this regime, better known as a ‘PT exact
phase’, the two eigenmodes are distributed over both sites and
neither of them experiences a net gain or loss—that is, they

remain neutral (see Fig. B2). On the other hand, the character-
istics of the supermodes drastically change as soon as g/κ > 1,
beyond which the system enters the ‘PT-broken phase’. In this
regime, the eigenvalues are expressed byE1,2=±iκ sinh(θ), where
θ=cosh−1(g/κ), and their corresponding non-orthogonal eigen-
vectors turn out to be |φ1,2〉= [1 ie±θ ]T . The symmetry of each
mode is broken such that one of them resides mostly in the
gain cavity (and hence enjoys amplification) while the other one
inhabits the lossy resonator (experiences attenuation), as Fig. B2
graphically depicts.
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Figure B2 | Plot of the imaginary part of both eigenvalues of Ĥ versus
g/κ when δ=0.

More generally, a continuous Hamiltonian H is PT symmetric
provided that its complex potential satisfies V (x , y) =
V ∗(−x ,−y). An intriguing aspect of such Hamiltonians is the
sharp symmetry-breaking transition taking place at an exceptional
point. In the broken regime, the Hamiltonian and the PT operator
no longer display the same set of eigenfunctions even though they
still commute, a direct outcome of the antilinear nature of the time
reversal operator. As a result the eigenvalues of the system cease
to be real; instead they appear as complex conjugate pairs.
A prototypical system that exhibits the above characteristics
is that of a PT-symmetric lattice. An example of a spatial
two-dimensional periodic PT potential is given by V (x , y)=
cos2 x + cos2 y + iV0 sin (2x) sin (2y), with the corresponding
PT-symmetric Hamiltonian Ĥ=−∇2

−V (see Fig. B3a).
Here, because of PT symmetry, the band gaps can entirely close
and the two first bands can merge, forming a closed surface
exhibiting complex conjugate pairs in the overlapping regions and
real eigenvalues in the areas in between (see Fig. B3b,c).
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Figure B3 | a, PT lattice. b,c, Real and imaginary parts, respectively, of the first two bands in the broken PT phase.
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Figure 1 | Schematic presentation of a PT-coupled system and first
experimental observations of spontaneous PT symmetry breaking.
a, A coupled arrangement of two identical waveguide elements having an
equal amount of gain and loss. b, Loss-induced transparency observed in
passive PT-symmetric coupled waveguide channels. In the PT-broken
phase, an increase in loss enhances the overall transmission. c, Optical
wave propagation when the coupled system in a is excited at either
channel, above and below the PT-symmetry transition threshold. Adapted
from ref. 19, APS (b); and ref. 20, Macmillan Publishers Ltd (c).

To summarize some of the important aspects of non-Hermitian
physics and PT symmetry in this review article, we primarily
focus on the interplay between conservative and non-conservative

processes in photonics. Historically, moulding the flow of light
largely relied on our ability to shape the refractive index distribution,
an endeavour that started with the first lenses in antiquity and by
now has reached such a level of perfection that artificial structures
as diverse as optical fibres, photonic crystals, and metamaterials
have become possible28–31. After the invention of the laser, optical
amplification or gain has in turn enabled numerous applications
in many areas of science and technology. Gain is unquestionably a
valuable commodity in optics, typically used to mitigate losses and
to boost the level of a signal. On the other hand, loss, unlike the
other two components, is still perceived to be a foe—an undesirable
attribute that should be avoided or compensated at all costs. It is
in this context that the introduction of PT symmetry (see Box 1)
and, in general, non-Hermitian notions in optics, has drastically
changed our views on the role of amplification and attenuation in
light transport.

Unidirectional invisibility and PT-symmetric metamaterials
The most common methodologies for designing optical metama-
terials are those that rely on altering or sometimes even reversing
the sign of the constitutive permittivity and permeability parameters
ε,µ—something that typically comes at the price of adding unde-
sired losses31. In this respect, approaches based on PT symmetry and
non-Hermitian physics can introduce additional degrees of freedom
in designing metamaterials by allowing one to involve the entire
complex plane instead.

One-dimensional periodic structures provide a convenient plat-
form to study the ramifications of PT symmetry on light trans-
port. In their Hermitian embodiment, these arrangements display a
sequence of allowed bands and forbidden gaps, where the reflection
and transmission remains invariant whether the light enters the
structure from the left or right. However, if every unit cell in such
a lattice is anti-symmetrically impregnated with gain and loss, the
direction that light enters the system can influence its reflection
properties. This effect is most pronounced at an exceptional point,
where the potential becomes entirely reflectionless from one side.
Using a periodic PT grating, one can match this effect with perfect
transmission (unity inmagnitude, and a phase that is identical to the
one in the absence of the grating). In this way, a ‘uni-directionally
invisible’ Bragg grating can be realized, having a response that
crucially depends on the way the gain–loss dipoles are oriented
(see Fig. 2a). When the direction of the incoming wave or the
dipole orientation is flipped, the reflection can even exceed unity32.
Of course, in linear settings, the transmission coefficients from
port to port remain invariant, and hence the reciprocity theorem
still holds.

Extensions of these ideas have recently been focused on
PT-symmetric gain–loss gratings for ‘cloaking’ objects33,34. The
underlying idea is to fabricate gain–loss structures around an object,
where the loss part absorbs an incoming wave and the gain part
re-emits it. In this respect, a balanced gain–loss distribution can
provide relaxed constraints with regard to the size of the concealed
object, and enables broadband invisibility. Using such schemes, not
only can the scattering amplitudes in the far field be engineered, but
also the near-field features can be effectively suppressed through
‘constant-intensity waves’ that exist even in inhomogeneous scat-
tering landscapes35,36—a feature that is inaccessible in Hermitian
environments. Negative refraction due to the non-orthogonality
of modes and the possibility for aberration-free imaging using
PT metasurfaces are relevant topics that could be of significance
in nanophotonics37,38.

Periodic chains of ‘PT-atoms’ can exhibit a number of other
exotic features that have no analogue in Hermitian lattices. These
include, for example, band-merging effects and exceptional lines
in higher dimensions, as well as phase dislocations and power
oscillations16,39–41. Other properties of optical PT lattices have been
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Figure 2 | Unidirectional invisibility and PT-symmetric arrays. a, A PT-symmetric grating can display unidirectional invisibility and a reflectivity exceeding
unity. b, A gain/loss fibre loop mesh network used to demonstrate unidirectional invisibility. c, Bloch oscillations in a passive (left) and PT-symmetric
(right) mesh loop system. d, A two-dimensional photonic crystal (left) exhibiting rings of exceptional points and the measured reflectivity spectra (right)
near such points in the bandstructure. Adapted from ref. 32, APS (a); ref. 45, Macmillan Publishers Ltd (b,c); and ref. 49, Macmillan Publishers Ltd (d).

investigated in several theoretical works. These include optical PT
graphene arrangements42, Talbot revivals43, and Anderson localiza-
tion44. Even though, at first glance, a PT-symmetric lattice with a
balanced gain/loss profile may seem to be isotropic, its diffraction
patterns resulting from broadband excitation conditions resemble
more those expected in anisotropic media. This type of double
refraction is a direct outcome of the non-orthogonality of the as-
sociated Floquet–Bloch modes16.

PT synthetic photonic lattices were experimentally realized for
the first time in 2012 using coupled fibre loops with balanced
gain and loss profiles45 (Fig. 2b). In this same physical set-up,
Bloch oscillations, self-trapped states (Fig. 2c), and defects were also
observed, along with double refraction effects, superluminal energy
transport, abrupt eigenvalue phase transitions and unidirectional
invisibility45,46. Similar behaviour was also reported in passive
silicon periodic nanowires47, and subsequently inmultilayer Si/SiO2
unidirectional reflectors48. Another relevant development in this
area was the demonstration of rings of exceptional points in
photonic crystal slabs49 (Fig. 2d).

Symmetry breaking and exceptional points in laser systems
Lasers provide perhaps the ultimate non-Hermitian playground
where gain and loss are simultaneously engaged. In general, gain is
induced through external pumping, whereas loss is already present
due to the intended out-coupling mechanisms and unavoidable
scattering/dissipation in the cavity. The significance of non-
Hermiticity in designing and predicting the performance metrics of
lasers was long acknowledged by the laser community. For example,
an important property associated with a laser device is the emission
linewidth. Although to a first-order approximation the laser
linewidth can be predicted by the Schawlow–Townes formula50, in

more complex settings, where the eigenmodes are strongly non-
orthogonal, a significant departure from this fundamental limit has
been predicted51 and experimentally observed52. To a great extent,
this linewidth enhancement can be attributed to the loss-induced
coupling between modes, which translates into excess noise by the
gain mechanism and the cavity feedback53. Closely spaced complex
eigenvalues were also found to lead to fast self-pulsations in coupled
laser oscillators54, as well as to improved coherent beam combining
schemes55. Even though some of these aspects have already been
partially explored, much insight can still be gained by studying laser
systems operating near exceptional points56.

The peculiar behaviour of complex eigenvalues around an
exceptional point manifests itself in the threshold and spectral
response of lasing systems57,58. When operating a PT-symmetric
‘photonic molecule’ (Fig. 3a) as a laser, the exceptional points lead to
an unexpected pump-induced suppression and revival of lasing59 -
an effect that was experimentally demonstrated in coupled quantum
cascade lasers as well as in a pair of silica microcavities with Raman
gain60,61. Exceptional points were also found to promote single-
mode behaviour in another class of oscillators—the so-called dark
state lasers62,63.

In other developments, intrinsically single-mode lasing action
was demonstrated in PT-symmetric microcavity arrangements64–67
(Fig. 3b). Whereas, at a first glance, intentionally introducing addi-
tional losses in a resonator may appear to be only detrimental, it is,
in fact, common practice to insert lossy apertures in laser cavities
to suppress higher-order spatial modes. Once we appreciate the fact
that loss can indeed enhance the performance of a laser, the next
question naturally is: what is the best strategy to exploit attenuation
in a laser cavity to suppress unwanted modes without adversely
affecting the fundamental mode? Along these lines, in ref. 65, the
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Figure 3 | PT-symmetric lasing systems and exceptional point encirclement. a, Schematic of PT-symmetric coupled resonators. b, A PT-symmetric dual
microring laser arrangement supporting stable single-mode operation. c, The time reverse of a laser with gain (top panel) is a structure with loss (bottom
panel) that can perfectly absorb incoming light provided it has the right frequency and phase relationship between the two input beams on the left and
right. d, Self-intersecting Riemann sheets in complex parameter space with an exceptional point at the centre. Encircling the exceptional point dynamically
(curved arrows) faithfully leads to the same final state—depending only on the direction of encirclement. The two plots on the left (right) display the
results of a dynamical exceptional point encirclement for a anticlockwise (clockwise) contour. The implementation of this chiral behaviour in a waveguide
with a suitably designed boundary and absorber leads to the dominant transmission of a specific mode only (irrespective of the input). Adapted from
ref. 65, AAAS (b); ref. 73, APS (c); and ref. 96, Macmillan Publishers Ltd (d).

selective breaking of PT symmetry in a coupled microresonator
system was exploited to realize a new family of inherently single-
mode lasers with unique self-adapting properties (Fig. 3b). In these
micro-scale arrangements, mode selection is accomplished without
incorporating dispersive elements as previously done for example
in vertical cavity surface emitting lasers (VCSELs) and distributed
feedback (DFB) lasers. Without any penalty in terms of slope
efficiency or threshold pump intensity, such coupled PT-symmetric
lasers can become a viable source of coherent radiation in integrated
photonic circuits where single-growth processing and in-plane out-
put coupling are preferred. In a parallel development, thresholdless
symmetry breaking was observed in a ring structure involving a PT
grating, which in turn led to stable single-mode operation for the
desired whispering-gallery mode order66.

There are several possible future developments. One would be to
consider the properties of multiple and individually tunable coupled
cavities. Such configurations can exhibit higher-order exceptional
points68 that may in turn be useful in developing high-performance
active sensors69–71. Exceptional points also play an increasingly
prominent role in generating beamswith orbital angularmomenta72.
Another possibility is the realization of a PT-symmetric laser-
absorber73,74 that can simultaneously lase and perfectly absorb
light at the same frequency (Fig. 3c). Related concepts, such as
phonon lasing, aremeanwhile being considered in conjunction with
PT symmetry75.

Non-Hermitian nonlinear systems
The interplay between non-Hermiticity and nonlinear processes
poses a number of intriguing and fundamental questions. For exam-
ple, one of the key features of PT-symmetric systems is the abrupt
transition of their corresponding eigenvalue spectra from the real

to the complex domain. In view of the fact that light by itself can
locallymodify its index surroundings via nonlinearities, it is reason-
able to ask whether the rules governing this behaviour can change
at higher power levels. Indeed, it was theoretically predicted that
nonlinear Kerr effects can induce a transition in a PT-symmetric
lattice from a broken to an unbroken phase, and vice versa76. In
other words, in sharp contrast with linear PT-symmetric configu-
rations, nonlinear processes are capable of reversing the order in
which the symmetry breaking occurs. This feature was successfully
observed in semiconductor-based PT-symmetric dual microring
laser resonators as a result of gain saturation77,78. Yet, even in the
nonlinear regime, the resulting non-Hermitian states were found to
retain the structural form of the corresponding linear eigenvectors.
Such nonlinear PT-symmetric systems can have far-reaching impli-
cations. For example, in a recent study, it has been demonstrated
that PT-symmetric circuits incorporating nonlinear gain saturation
elements can provide robust wireless power transfer79.

Nonlinear optical transport in periodic lattices endowed with PT
symmetry is another topic of interest18,80. In this regard, coherent
structures in the form of discrete or lattice solitons were identified
in quasi-transparent PT periodic optical potentials81–83. Contrary
to Ginzburg–Landau dissipative systems, where self-trapped waves
are known to exist as points in phase space, here, entire families of
solutions can emerge as if the PT photonic crystal was conserva-
tive83. This unusual class of optical solitons was recently observed
for the first time in nonlinear mesh lattices, with global and local
PT symmetry84. Modulation instability in nonlinear non-Hermitian
inhomogeneous media was also investigated by employing gen-
eralized plane wave solutions35. The possibility of simultaneously
engaging non-Hermiticity and nonlinearity as a means to imple-
ment all-dielectric unidirectional devices was also suggested85,86.
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Non-Hermiticity can also provide an alternative route to phase
matching in three- and four-wave mixing processes87,88. This, in
turn, opens new opportunities for utilizing semiconductormaterials
with large nonlinear coefficients for implementing on-chip optical
components such as parametric amplifiers and oscillators. Addi-
tionally, non-Hermitian systems exhibiting nonlinearities due to the
coupling between light and mechanical vibrations have also been
recently explored74,89.

Encircling exceptional points
A fascinating aspect of exceptional points is related to the geometry
of the self-intersecting Riemann sheets on which the complex eigen-
values unfold (see Fig. 3d and Box 1). This led to several studies as
to what ensues when an exceptional point is encircled along a closed
loop in parameter space. Theoretical predictions pointed out that
in the quasi-static regime, the system does not return to its initial
state upon encirclement, but to a different state on another Riemann
sheet—requiring a second encirclement to return to the initial
state (apart from a geometric Berry phase of π (ref. 90)). Initial
experiments in microwave arrangements91, optical cavities92, and
polariton condensates93 confirmed this interesting behaviour. Yet,
subsequent studies showed that the gain and loss needed to produce
an exceptional point also destroy the adiabatic evolution around
the exceptional point94,95. In a fully dynamical picture, additional
non-adiabatic transitions emerge, which give rise to a fascinating
chiral behaviour through which the direction of encirclement alone
determines the final state of the system (see trajectories in Fig. 3d).

These latter predictions were confirmed in two experiments, in
the microwave domain and in optomechanics96,97. In the first exper-
iment96 (see Fig. 3d), the dynamical encirclement of an exceptional
point was mapped onto the spatial propagation in a two-mode
waveguide featuring suitably engineered boundary modulations

and internal losses. Since the polarity of the exceptional point
encirclement is dictated by the propagation direction, the chiral
behaviour manifests itself in unique transmission characteristics.
Irrespective of the input state, the waveguide transmits predomi-
nantly into onemode depending on the direction of propagation. In
the second experiment97, a mechanical membrane was placed inside
an optical resonator and an external laser was used to implement the
above chiral state transfer. Finally, the possibility of an integrated
optical omni-polarizer has been suggested. This component can
faithfully produce a specific polarization state regardless of the
input—something that is impossible using single channel schemes98.

Outlook and future directions
Topological phenomena in non-Hermitian optical systems. The
past decade has seen a surge of interest in topological insulators:
materials that allow extremely robust and uninterrupted flow of
current, akin to quantum Hall phenomena. This naturally raised
the exciting possibility of investigating topological systems in
photonics, where the physics can be studied in great detail and
under controlled conditions. Lately, photonic systems have allowed
these topological phenomena to be probed directly in ways that
would have been inconceivable in the solid state99–105 (see Fig. 4a,b
for two examples). Given that optics offers an ideal ground where
gain and/or loss can be physically implemented, a promising future
direction is to explore light dynamics in non-Hermitian topological
systems. For example, an open question in this field pertains to the
existence of topological insulators in PT-symmetric non-Hermitian
arrangements106. The connection between topological physics and
non-Hermiticity has just recently come to be appreciated. In
particular, the insight provided by the Rudner–Levitov model,
demonstrating that topological phase transitions can take place in
one-dimensional non-Hermitian quantum walks107, paves the way
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for the experimental realization of topologically protected edge
states in optical PT-symmetric lattices, and for examining possible
relations between topological Chern numbers and exceptional
points. Another important question, still to be addressed, is how
chiral aspects in encircling an exceptional point (see previous
section) could be used for topological state protection. These
intriguing topics could serve as a bridge between the fields of
topological photonics and PT-symmetric optics.

A PT-symmetric perspective in active plasmonics. The field of
plasmonics provides a route towards confining and manipulating
light at the nanoscale. This type of sub-diffraction localization is
enabled by electromagnetic excitations coupled to electron charge
density waves on a metal–dielectric interface, better known as
surface plasmon polaritons. Unfortunately, this energy recycling
between photons and charge oscillations is subject to apprecia-
ble metal dissipation losses. Research efforts in the field of active
nanoplasmonics are meant to address this challenge by introducing
gain materials in the vicinity of metals108–110 (see Fig. 4c for an
example). Given that active plasmonics and PT optics share com-
mon ground, bymerging ideas from these two areas one can perhaps
devise methodologies to effectively scale down light generation,
transport, and detection into subwavelength dimensions using both
metals and gain media.

Several theoretical studies have so far examined such interesting
possibilities by considering PT surface waves, PT long-range plas-
mon polaritons, exceptional points in plasmonic waveguides, as well
as PT-symmetry breaking at a metallic interface111. PT plasmonics
brings up many interesting and fundamental issues. For example, at
the subwavelength domain, amplification and attenuation need to
be revisited from a quantum perspective. In addition, at this point it
is not clear how the local density of states and the Purcell factor will
be modified when a PT plasmonic phase transition occurs.

Non-Hermiticity in the quantum regime
Thus far, the application of PT symmetry to optical systems has
largely relied on effective medium theories, where processes such as
stochastic quantum jumps can be neglected (see introduction). Nat-
urally, a new direction could be the study of non-Hermitian effects
in small-scale devices as well as in atomic and molecular systems,
where quantumprocesses are known to play a significant role. These
include, for instance, driven atomic condensates in cavities112, artifi-
cial atoms or hybrid quantum systems in cavity quantum electrody-
namics113,114 as well as coupled optomechanical resonators with gain
and loss, where effects such as phonon lasing115 near exceptional
points could be explored (Fig. 4d). Initial theoretical studies in this
direction show that the presence of quantum noise leads to signif-
icantly different physics as compared to that expected from semi-
classical approaches.Novel phaseswith preserved or ‘weakly’ broken
PT symmetry appear, as well as unconventional transitions from
high-noise thermal emission to a coherent lasing state116. Such inter-
actions could in principle also appear in other contexts of quantum
optics, such as the prototypical case of an atom interacting with the
mode of a light field in an open system. Thewidely studied crossover
between weak and strong light–matter interaction is mediated
through an exceptional point113. Indeed, results along these lines
have been reported in systems having a single quantum dot embed-
ded in a semiconductor microcavity114. Similar dynamics also takes
place during radiofrequency transitions between metastable states
in atomic hydrogen117. Of interest will be to theoretically identify a
broader class of quantumdynamical scenarios where transitions can
be engineered via controlled dephasing interactions.

Other platforms for non-Hermitian physics
As pointed out in the introduction of this review, by now non-
Hermitian concepts have penetrated a number of sub-disciplines

in physics, from nuclear and quantum, to optical, microwave, elec-
tronic andmechanical systems.One rapidly expanding area is that of
acoustics, where exceptional points can be readily accessed118,119 and
used for the realization of invisible sensors24. In the quantum realm,
PT symmetry can be observed in a number of platforms. These
include, for example, Bose–Einstein condensates112, ferromagnetic
superfluids120, exciton-polariton condensates93, and flying atoms27.
Most recently, the discovery of a hidden PT symmetry in the quan-
tum amplification by superradiant emission of radiation (QASER)
was reported which employs a parametric resonance to achieve an
exponential generation of X-rays121. Whereas a variety of different
topics have already been reinvigoratedwithin the framework of non-
Hermitian physics, the subject is still in its infancy, with many of its
possibilities as yet undiscovered.
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